Yuefei Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652542/publications.pdf Version: 2024-02-01

VUEEEI HU

#	Article	IF	CITATIONS
1	Acid–Base Jointly Promoted Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Journal of Organic Chemistry, 2011, 76, 6832-6836.	3.2	130
2	Silver-catalyzed decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo-carboxylic acids. Organic and Biomolecular Chemistry, 2017, 15, 8929-8935.	2.8	128
3	Copper(I) Acetate: A Structurally Simple but Highly Efficient Dinuclear Catalyst for Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition. Advanced Synthesis and Catalysis, 2010, 352, 1587-1592.	4.3	106
4	Highly Practical "Ligandâ€Freeâ€Like―Copperâ€Catalyzed <i>N</i> â€Arylation of Azoles in Lower Nitrile Solvents. Advanced Synthesis and Catalysis, 2008, 350, 1253-1257.	4.3	87
5	<i>N</i> -Sulfonyl acetylketenimine as a highly reactive intermediate for the synthesis of <i>N</i> -sulfonyl amidines. Chemical Communications, 2018, 54, 8222-8225.	4.1	35
6	Tandem Reaction of 1-Copper(I) Alkynes for the Synthesis of 1,4,5-Trisubstituted 5-Chloro-1,2,3-triazoles. Journal of Organic Chemistry, 2013, 78, 10519-10523.	3.2	33
7	Tandem Synthesis of 3-Chloro-4-iodoisoxazoles from 1-Copper(I) Alkynes, Dichloroformaldoxime, and Molecular Iodine. Journal of Organic Chemistry, 2015, 80, 2413-2417.	3.2	32
8	Tandem Synthesis of 3-Halo-5-Substituted Isoxazoles from 1-Copper(I) Alkynes and Dihaloformaldoximes. Organic Letters, 2014, 16, 6140-6143.	4.6	31
9	Synthesis of <i>N</i> -Sulfonyl Arylaldimines Developed by Retesting an Old Process. Organic Letters, 2016, 18, 604-607.	4.6	30
10	Minutes Synthesis of 1,4,5â€Trisubstituted 5â€Dialkylaminoâ€1,2,3â€triazoles by 1â€Copper(I)â€Alkyne Contro Tandem Process. Advanced Synthesis and Catalysis, 2015, 357, 401-407.	olled 4.3	27
11	Synthesis of 3â€Iodoquinolines by Copperâ€Catalyzed Tandem Annulation from Diaryliodoniums, Nitriles, and 1â€Iodoalkynes. Advanced Synthesis and Catalysis, 2016, 358, 2332-2339.	4.3	25
12	Preparation of 1,4,5â€Trisubstituted 5â€Acylâ€1,2,3â€ŧriazoles by Selective Acylation between Copper(I)â€Carbon(<i>sp</i>) and Copper(I)â€Carbon(<i>sp</i> ²) Bonds with Acyl Chlorides. Advanced Synthesis and Catalysis, 2013, 355, 2564-2568.	4.3	24
13	Easy preparation of 1,4,5-trisubstituted 5-(2-alkoxy-1,2-dioxoethyl)-1,2,3-triazoles by chemoselective trapping of copper(I)–carbon bond with alkoxalyl chloride. Tetrahedron Letters, 2013, 54, 6097-6100.	1.4	19
14	A general route for synthesis of N-aryl phenoxazines via copper(i)-catalyzed N-, N-, and O-arylations of 2-aminophenols. RSC Advances, 2014, 4, 51133-51139.	3.6	19
15	Tandem Synthesis of α-Diazoketones from 1,3-Diketones. Journal of Organic Chemistry, 2017, 82, 9171-9174.	3.2	17
16	A Method for Bischler–Napieralski-Type Synthesis of 3,4-Dihydroisoquinolines. Organic Letters, 2019, 21, 2574-2577.	4.6	16
17	Metal-Free Method for Direct Synthesis of Functionalized β-Ketoenamines. Journal of Organic Chemistry, 2019, 84, 3656-3661.	3.2	15
18	One-pot three-component synthesis of 1,4,5-trisubstituted 5-iodo-1,2,3-triazoles from 1-copper(i) alkyne, azide and molecular iodine. RSC Advances, 2015, 5, 14561-14566.	3.6	13

YUEFEI HU

5

#	Article	IF	CITATIONS
19	A general two-step one-pot synthesis process of ynones from α-keto acids and 1-iodoalkynes. Chemical Communications, 2018, 54, 9517-9520.	4.1	13
20	Lewis acid-catalyzed tandem synthesis of 9-sulfonylamino- and 9-arylfluorenes. RSC Advances, 2016, 6, 47570-47578.	3.6	10
21	Bischler–Napieralski Synthesis of 6-Alkynyl Phenanthridines Based on Tf2O-Promoted Electrophilic Activation of N-Aryl-2-propynamides. Journal of Organic Chemistry, 2021, 86, 15726-15732.	3.2	10
22	Tandem Synthesis of 1,3-Disubstituted Naphthalenes via TfOH-Promoted Directed-Aldol and Friedel–Crafts Reactions. Journal of Organic Chemistry, 2021, 86, 15011-15019.	3.2	10
23	A Tf 2 Oâ€Promoted Synthesis of Functionalized Quinolines from Ketoximes and Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 1995-1999.	4.3	9
24	Inâ€situ Generated and Premade 1 opper(I) Alkynes in Cycloadditions. Chemical Record, 2017, 17, 1231-1248.	5.8	8
25	Ruthenium-Catalyzed Synthesis of Fused Tricyclic 1 <i>H</i> -2,3-Dihydropyrimido[1,2- <i>a</i>]quinolines in One Step. Organic Letters, 2017, 19, 3378-3381.	4.6	8
26	General Synthesis of Î \pm -Alkyl Ynones from Morpholine Amides and 1-Copper(I) Alkynes Promoted by Triflic Anhydride. Organic Letters, 2020, 22, 8296-8301.	4.6	8
27	An Efficient and Practical Method for Highly Chemoselective Hydrogenation of Nitrobenzylamines to Aminobenzylamine Hydrochlorides. Advanced Synthesis and Catalysis, 2007, 349, 1775-1780.	4.3	7
28	Hydrogenation of (N,N-disubstituted aminomethyl)nitrobenzenes to (N,N-disubstituted) Tj ETQq0 0 0 rgBT /Overlo 47125-47130.	ock 10 Tf 5 3.6	50 387 Td (7
29	General Synthesis of Fully Substituted 4-Aminooxazoles from Amides and 1,4,2-Dioxazol-5-ones Based on Amide Activation and Umpolung Process. Journal of Organic Chemistry, 2021, 86, 199-206.	3.2	5

Bischlerâ€"Napieralski Synthesis of Polycyclic N-Heteroaromatics Based on Tf₂O-Promoted30Electrophilic Activation of <i>N</i>-Aryl-2-Propynamides. Journal of Organic Chemistry, 2022, 87,3.24124-4133.4124-4133.

3