Marta Eliza Plonska-Brzezinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652429/publications.pdf

Version: 2024-02-01

Marta Eliza

#	Article	IF	CITATIONS
1	A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochimica Acta, 2022, 403, 139633.	5.2	54
2	Microwave-Assisted Synthesis of Modified Glycidyl Methacrylate–Ethyl Methacrylate Oligomers, Their Physico-Chemical and Biological Characteristics. Molecules, 2022, 27, 337.	3.8	1
3	Synthesis and Structural Characterization of Pyridine-2,6-dicarboxamide and Furan-2,5-dicarboxamide Derivatives. Molecules, 2022, 27, 1819.	3.8	4
4	Polymeric Network Hierarchically Organized on Carbon Nano-onions: Block Polymerization as a Tool for the Controlled Formation of Specific Pore Diameters. ACS Applied Polymer Materials, 2022, 4, 2442-2458.	4.4	5
5	Carbon nano-onion induced organization of polyacrylonitrile-derived block star polymers to obtain mesoporous carbon materials. Chemical Communications, 2022, 58, 6829-6832.	4.1	3
6	A Nanocomposite Containing Carbon Nanoâ€onions and Polyaniline Nanotubes as a Novel Electrode Material for Electrochemical Sensing of Daidzein. Electroanalysis, 2021, 33, 1107-1114.	2.9	4
7	Monocarbonyl Analogs of Curcumin Based on the Pseudopelletierine Scaffold: Synthesis and Anti-Inflammatory Activity. International Journal of Molecular Sciences, 2021, 22, 11384.	4.1	3
8	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2021, 13, 51628-51642.	8.0	5
9	Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials, 2020, 13, 188.	2.9	76
10	Carbon Nanoâ€Onion and Zinc Oxide Composites as an Electron Transport Layer in Inverted Organic Solar Cells. ChemNanoMat, 2020, 6, 248-257.	2.8	8
11	Application of carbon nanoonion-NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: Electrochemical determination of ascorbic acid. Microchemical Journal, 2020, 159, 105470.	4.5	27
12	Opening the internal structure for transport of ions: improvement of the structural and chemical properties of single-walled carbon nanohorns for supercapacitor electrodes. RSC Advances, 2020, 10, 38357-38368.	3.6	6
13	Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules, 2020, 25, 5795.	3.8	45
14	Synthesis of Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 Nanoparticles: The Photocatalytic Effects on Organic Pollutants upon Irradiation with UV-Vis Light. Catalysts, 2020, 10, 494.	3.5	32
15	Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetaminophen. Journal of Electroanalytical Chemistry, 2020, 871, 114309.	3.8	57
16	Evaluation of the Covalent Functionalization of Carbon Nano-Onions with Pyrene Moieties for Supercapacitor Applications. Materials, 2020, 13, 1141.	2.9	30
17	Nanostructural catalyst: metallophthalocyanine and carbon nano-onion with enhanced visible-light photocatalytic activity towards organic pollutants. RSC Advances, 2020, 10, 10910-10920.	3.6	10
18	A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Materials Science and Engineering C, 2020, 110, 110684.	7.3	74

MARTA ELIZA

#	Article	IF	CITATIONS
19	Carbon nanoonion-ferrocene conjugates as acceptors in organic photovoltaic devices. Nanoscale Advances, 2019, 1, 3164-3176.	4.6	10
20	Preparation and Characterization of Magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 Nanoparticles and Investigation of Their Photocatalytic and Anticancer Properties on PANC1 Cells. Materials, 2019, 12, 3274.	2.9	53
21	Carbon Nanoâ€Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat, 2019, 5, 568-580.	2.8	75
22	Correlation between the catalytic and electrocatalytic properties of nitrogen-doped carbon nanoonions and the polarity of the carbon surface: Experimental and theoretical investigations. Carbon, 2019, 151, 120-129.	10.3	11
23	Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation. Molecules, 2019, 24, 1118.	3.8	33
24	Postsynthetic treatment of carbon nano-onions: Surface modification by heteroatoms to enhance their capacitive and electrocatalytic properties. Carbon, 2019, 147, 90-104.	10.3	26
25	Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers, 2019, 11, 350.	4.5	127
26	Carbon Nanomaterials: Perspective of their Applications in Biomedicine. Current Medicinal Chemistry, 2019, 26, 6832-6833.	2.4	6
27	Onion-Like Carbon Nanostructures: An Overview of Bio-Applications. Current Medicinal Chemistry, 2019, 26, 6896-6914.	2.4	11
28	Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chemistry and Chemical Technology, 2019, 13, 64-70.	1.1	0
29	Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes. Chemistry and Chemical Technology, 2019, 13, 444-450.	1.1	0
30	1,2,3,4,6â€Pentaâ€Oâ€galloylâ€Î²â€Dâ€glucopyranose: Its Antiâ€Inflammatory and Antibacterial Properties. ChemistrySelect, 2018, 3, 2498-2501.	1.5	6
31	A phenol-formaldehyde polymeric network to generate organic aerogels: synthesis, physicochemical characteristics and potential applications. Journal of Materials Chemistry A, 2018, 6, 845-852.	10.3	19
32	Nanoforest: Polyaniline Nanotubes Modified with Carbon Nano-Onions as a Nanocomposite Material for Easy-to-Miniaturize High-Performance Solid-State Supercapacitors. Polymers, 2018, 10, 1408.	4.5	23
33	Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar. 3. Coumarone-Indene Resins with Methacrylic Fragments. Chemistry and Chemical Technology, 2018, 12, 379-385.	1.1	8
34	A new perspective on carbon nano-onion/nickel hydroxide/oxide composites: Physicochemical properties and application in hybrid electrochemical systems. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 193-203.	2.1	10
35	Improvement of the Structural and Chemical Properties of Carbon Nanoâ€onions for Electrocatalysis. ChemNanoMat, 2017, 3, 583-590.	2.8	24
36	Boronâ€Doped Polygonal Carbon Nanoâ€Onions: Synthesis and Applications in Electrochemical Energy Storage. Chemistry - A European Journal, 2017, 23, 7132-7141.	3.3	36

MARTA ELIZA

#	Article	IF	CITATIONS
37	Enhanced Photocatalytic Performance of Porphyrin/Phthalocyanine and <i>Bis</i> (4â€pyridyl)pyrrolidinofullerene modified Titania. ChemistrySelect, 2017, 2, 2462-2470.	1.5	12
38	Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 2017, 468, 49-66.	2.4	161
39	PEGylated Carbon Nano-onions Composite as a Carrier of Polyphenolic Compounds: A Promising System for Medical Applications and Biological Sensors. Colloids and Interface Science Communications, 2017, 21, 6-9.	4.1	15
40	Carbon nano-onion composites: Physicochemical characteristics and biological activity. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 185-192.	2.1	23
41	Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis. Journal of Electronic Materials, 2017, 46, 443-450.	2.2	9
42	Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study. Journal Physics D: Applied Physics, 2016, 49, 285305.	2.8	40
43	Three-Component EC-SPR Biosensor Based on Graphene Oxide, SiO ₂ and Gold Nanoparticles in NADH Determination. ECS Journal of Solid State Science and Technology, 2016, 5, M3018-M3025.	1.8	9
44	Investigation of Functional Carboxy-Containing Oligomers by IR and NMR Spectroscopy. Chemistry and Chemical Technology, 2016, 10, 125-134.	1.1	1
45	Synthesis of carbon nano-onion/nickel hydroxide/oxide composites for electrochemical supercapacitor electrode applications. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s378-s378.	0.1	0
46	Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nanoâ€Onions. ChemPhysChem, 2015, 16, 2182-2191.	2.1	27
47	Triple helical collagen-like peptide interactions with selected polyphenolic compounds. RSC Advances, 2015, 5, 95443-95453.	3.6	14
48	Chemical versus Electrochemical Synthesis of Carbon Nanoâ€onion/Polypyrrole Composites for Supercapacitor Electrodes. Chemistry - A European Journal, 2015, 21, 5783-5793.	3.3	64
49	Combined high permittivity and high electrical conducÂŧivity of carbon nano-onion/polyaniline composites. Synthetic Metals, 2015, 209, 583-587.	3.9	23
50	Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chemistry and Chemical Technology, 2015, 9, 69-76.	1.1	14
51	Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy. Chemistry and Chemical Technology, 2015, 9, 435-443.	1.1	6
52	Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates. Carbon, 2014, 67, 304-317.	10.3	39
53	Modified Carbon Nano-Onions in Supercapacitor Electrodes. ECS Meeting Abstracts, 2014, , .	0.0	0
54	Chemical Synthesis of Carbon Nano-Onion and Nickel Nanoparticle Composite As a Supercapacitor Electrode. ECS Meeting Abstracts, 2014, , .	0.0	0

Marta Eliza

#	Article	IF	CITATIONS
55	Carbon Nanoâ€Onions and Biocompatible Polymers for Flavonoid Incorporation. Chemistry - A European Journal, 2013, 19, 5019-5024.	3.3	22
56	Carbon nano-onions for supercapacitor electrodes: recent developments and applications. Journal of Materials Chemistry A, 2013, 1, 13703.	10.3	132
57	Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes. RSC Advances, 2013, 3, 25891.	3.6	60
58	Preparation and characterization of soluble carbon nano-onions by covalent functionalization, employing a Na–K alloy. Chemical Communications, 2013, 49, 2406.	4.1	47
59	STMâ€Based Molecular Junction of Carbon Nanoâ€Onion. ChemPhysChem, 2013, 14, 96-100.	2.1	37
60	The Electrochemical Properties of Nanocomposite Films Obtained by Chemical In Situ Polymerization of Aniline and Carbon Nanostructures. ChemPhysChem, 2013, 14, 116-124.	2.1	32
61	Comparison of the electrochemical properties of thin films of MWCNTs/C60-Pd, SWCNTs/C60-Pd and ox-CNOs/C60-Pd. Electrochimica Acta, 2013, 96, 274-284.	5.2	38
62	Preparation and Characterization of Carbon Nanoâ€Onion/PEDOT:PSS Composites. ChemPhysChem, 2012, 13, 4134-4141.	2.1	64
63	Vibrational spectroscopic study of carbon nanoâ€onions coated with polyaniline. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1210-1212.	0.8	6
64	Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochimica Acta, 2012, 72, 61-67.	5.2	94
65	Preparation and Characterization of Composites that Contain Small Carbon Nanoâ€Onions and Conducting Polyaniline. Chemistry - A European Journal, 2012, 18, 2600-2608.	3.3	63
66	The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon, 2011, 49, 5079-5089.	10.3	63
67	Electrochemical Properties of Oxidized Carbon Nanoâ€Onions: DRIFTSâ€FTIR and Raman Spectroscopic Analyses. ChemPhysChem, 2011, 12, 2659-2668.	2.1	31
68	Small Noncytotoxic Carbon Nanoâ€Onions: First Covalent Functionalization with Biomolecules. Chemistry - A European Journal, 2010, 16, 4870-4880.	3.3	73
69	Electrochemical Properties of Small Carbon Nano-Onion Films. Electrochemical and Solid-State Letters, 2010, 13, K35.	2.2	45
70	Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. Journal of Materials Chemistry, 2010, 20, 7761.	6.7	53
71	Metal Nitride Cluster Fullerene M ₃ N@C ₈₀ (M=Y, Sc) Based Dyads: Synthesis, and Electrochemical, Theoretical and Photophysical Studies. Chemistry - A European Journal, 2009, 15, 864-877.	3.3	96
72	Synthesis, Characterization, and Photoinduced Electron Transfer Processes of Orthogonal Ruthenium Phthalocyanineâ^'Fullerene Assemblies. Journal of the American Chemical Society, 2009, 131, 10484-10496.	13.7	105

MARTA ELIZA

#	Article	IF	CITATIONS
73	Capacitance Performance of the Multiwall Carbon Nanotube Films as well as Films of Composites of the C60-Pd Polymer and Multiwall Carbon Nanotubes. ECS Meeting Abstracts, 2009, , .	0.0	0
74	Electrochemical Properties of Small Carbon Nanoonion Films. ECS Meeting Abstracts, 2009, , .	0.0	0
75	Sc ₃ N@C ₈₀ â€Ferrocene Electronâ€Donor/Acceptor Conjugates as Promising Materials for Photovoltaic Applications. Angewandte Chemie - International Edition, 2008, 47, 4173-4176.	13.8	141
76	A reinvestigation of the electrochemical behavior of Sc3N@C80. Journal of Electroanalytical Chemistry, 2008, 614, 171-174.	3.8	24
77	Highly Efficient Retro-cycloaddition Reaction of Isoxazolino[4,5:1,2][60]- and -[70]fullerenes. Journal of Organic Chemistry, 2007, 72, 3840-3846.	3.2	42
78	<i>meso,meso</i> â€Linked and Triply Fused Diporphyrins with Mixedâ€Metal Ions: Synthesis and Electrochemical Investigations. European Journal of Organic Chemistry, 2007, 2007, 4659-4673.	2.4	35
79	Remarkable solvent effect on the structure and electrochemical properties of [M(bipyridyl)3](ClO4)3 (M=Co, Fe and Ru) films. Electrochimica Acta, 2006, 51, 4544-4553.	5.2	8
80	Redox Active Two-Component Films of Palladium and Covalently Linked Zinc Porphyrin–Fullerene Dyad. Electroanalysis, 2006, 18, 841-848.	2.9	27
81	Electropolymerization of 2â€~-Ferrocenylpyrrolidino-[3â€~,4â€~;1,2][C60]fullerene in the Presence of Palladium Acetate. Formation of an Electroactive Fullerene-Based Film with a Covalently Attached Redox Probe. Chemistry of Materials, 2003, 15, 4122-4131.	6.7	40
82	Mediated Electrocatalysis at the Electrodes Covered with [MIII(bpy)3](ClO4)3 (M=Co and Fe) in the Presence of Electroactive Solutes. Electroanalysis, 2003, 15, 55-64.	2.9	10
83	New insights into the electrodeposition and redox properties of [M(Bipyridyl)3](ClO4)3 (M=Co and Fe) films in media of low dielectric constant. Journal of Electroanalytical Chemistry, 2002, 526, 77-84.	3.8	6
84	Microelectrodes Modified with [MIII(bpy)3](ClO4)3 (M=Co and Fe) as Analytical Sensors for Fullerenes in Flow Injection Analysis. Electroanalysis, 2001, 13, 1185-1190.	2.9	4