
## Magnus Korpas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26520/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Norwegian case study on the production of hydrogen from wind power. International Journal of<br>Hydrogen Energy, 2007, 32, 1500-1507.                                                                       | 7.1  | 131       |
| 2  | Opportunities for hydrogen production in connection with wind power in weak grids. Renewable Energy, 2008, 33, 1199-1208.                                                                                     | 8.9  | 88        |
| 3  | Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties. Energies, 2019, 12, 1231.                                                                       | 3.1  | 71        |
| 4  | Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy and Buildings, 2016, 127, 194-205.                                                       | 6.7  | 70        |
| 5  | Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies, 2016, 9,<br>449.                                                                                                   | 3.1  | 65        |
| 6  | Robust planning of distributed battery energy storage systems in flexible smart distribution<br>networks: A comprehensive study. Renewable and Sustainable Energy Reviews, 2020, 123, 109739.                 | 16.4 | 62        |
| 7  | A Case-Study on Offshore Wind Power Supply to Oil and Gas Rigs. Energy Procedia, 2012, 24, 18-26.                                                                                                             | 1.8  | 60        |
| 8  | Power system decarbonization: Impacts of energy storage duration and interannual renewables variability. Renewable Energy, 2020, 156, 1171-1185.                                                              | 8.9  | 58        |
| 9  | A stochastic dynamic model for optimal timing of investments in new generation capacity in<br>restructured power systems. International Journal of Electrical Power and Energy Systems, 2007, 29,<br>163-174. | 5.5  | 55        |
| 10 | Distributed control scheme for residential battery energy storage units coupled with PV systems.<br>Renewable Energy, 2017, 113, 1099-1110.                                                                   | 8.9  | 54        |
| 11 | The Potential of Integrating Wind Power with Offshore Oil and Gas Platforms. Wind Engineering, 2010, 34, 125-137.                                                                                             | 1.9  | 53        |
| 12 | Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations. Applied Energy, 2021, 301, 117404.                                                                               | 10.1 | 52        |
| 13 | Optimal Partitioning of Smart Distribution Systems Into Supply-Sufficient Microgrids. IEEE<br>Transactions on Smart Grid, 2019, 10, 2523-2533.                                                                | 9.0  | 50        |
| 14 | Decarbonization synergies from joint planning of electricity and hydrogen production: A Texas case study. International Journal of Hydrogen Energy, 2020, 45, 32899-32915.                                    | 7.1  | 49        |
| 15 | A generic framework for power system flexibility analysis using cooperative game theory. Applied Energy, 2018, 212, 223-232.                                                                                  | 10.1 | 47        |
| 16 | Review of wind generation within adequacy calculations and capacity markets for different power systems. Renewable and Sustainable Energy Reviews, 2020, 119, 109540.                                         | 16.4 | 47        |
| 17 | Addressing technical challenges in 100% variable inverterâ€based renewable energy power systems.<br>Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e376.                                   | 4.1  | 47        |
| 18 | Trading strategies for distribution company with stochastic distributed energy resources. Applied Energy, 2016, 177, 625-635.                                                                                 | 10.1 | 46        |

MAGNUS KORPAS

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Power Conditioning of Distribution Networks via Single-Phase Electric Vehicles Equipped. IEEE<br>Systems Journal, 2019, 13, 3433-3442.                                                                         | 4.6  | 44        |
| 20 | Two-stage hybrid stochastic/robust optimal coordination of distributed battery storage planning and flexible energy management in smart distribution network. Journal of Energy Storage, 2019, 26, 100970.     | 8.1  | 43        |
| 21 | System Impact Studies for Near 100% Renewable Energy Systems Dominated by Inverter Based Variable<br>Generation. IEEE Transactions on Power Systems, 2022, 37, 3249-3258.                                      | 6.5  | 43        |
| 22 | Cost-optimal energy system design in Zero Energy Buildings with resulting grid impact: A case study of<br>a German multi-family house. Energy and Buildings, 2016, 127, 830-845.                               | 6.7  | 40        |
| 23 | Proactive operation of electric vehicles in harmonic polluted smart distribution networks. IET Generation, Transmission and Distribution, 2018, 12, 967-975.                                                   | 2.5  | 40        |
| 24 | Electrification of offshore petroleum installations with offshore wind integration. Renewable Energy, 2013, 50, 558-564.                                                                                       | 8.9  | 39        |
| 25 | Flexibility Planning of Distributed Battery Energy Storage Systems in Smart Distribution Networks.<br>Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2020, 44, 1105-1121. | 2.3  | 39        |
| 26 | Heat and electric vehicle flexibility in the European power system: A case study of Norwegian energy communities. International Journal of Electrical Power and Energy Systems, 2021, 125, 106479.             | 5.5  | 39        |
| 27 | A framework to determine optimal offshore grid structures for wind power integration and power exchange. Wind Energy, 2011, 14, 977-992.                                                                       | 4.2  | 38        |
| 28 | Balancing Market Integration in the Northern European Continent: A 2030 Case Study. IEEE<br>Transactions on Sustainable Energy, 2012, 3, 918-930.                                                              | 8.8  | 37        |
| 29 | Exploring prospective benefits of electric vehicles for optimal energy conditioning in distribution networks. Energy, 2018, 157, 679-689.                                                                      | 8.8  | 37        |
| 30 | Improving the network infeed accuracy of non-dispatchable generators with energy storage devices.<br>Electric Power Systems Research, 2008, 78, 2024-2036.                                                     | 3.6  | 36        |
| 31 | Electric vehicle mobility and optimal grid reconfiguration as flexibility tools in wind integrated power systems. International Journal of Electrical Power and Energy Systems, 2019, 110, 83-94.              | 5.5  | 34        |
| 32 | Aggregation Methods for Modelling Hydropower and Its Implications for a Highly Decarbonised Energy System in Europe. Energies, 2017, 10, 1841.                                                                 | 3.1  | 32        |
| 33 | Norway as a Battery for the Future European Power System—Impacts on the Hydropower System.<br>Energies, 2017, 10, 2054.                                                                                        | 3.1  | 32        |
| 34 | Stochastic Optimization of Microgrid Operation With Renewable Generation and Energy Storages.<br>IEEE Transactions on Sustainable Energy, 2022, 13, 1481-1491.                                                 | 8.8  | 31        |
| 35 | Strategy-making for a proactive distribution company in the real-time market with demand response.<br>Applied Energy, 2016, 181, 540-548.                                                                      | 10.1 | 28        |
| 36 | Demystifying market clearing and price setting effects in low-carbon energy systems. Energy<br>Economics, 2021, 93, 105051.                                                                                    | 12.1 | 27        |

MAGNUS KORPAS

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Identifying Operational Requirements for Flexible CCS Power Plant in Future Energy Systems. Energy Procedia, 2016, 86, 22-31.                                                              | 1.8  | 26        |
| 38 | Towards robust OPF solution strategy for the future AC/DC grids: case of VSCâ€HVDC onnected offshore wind farms. IET Renewable Power Generation, 2018, 12, 691-701.                        | 3.1  | 24        |
| 39 | Assessing the impact of sampling and clustering techniques on offshore grid expansion planning.<br>Energy Procedia, 2017, 137, 152-161.                                                    | 1.8  | 22        |
| 40 | Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A<br>Norwegian Case Study. Energies, 2019, 12, 4450.                                            | 3.1  | 21        |
| 41 | An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification. Energies, 2019, 12, 2114.                                                      | 3.1  | 21        |
| 42 | Value of hydro power flexibility for hydrogen production in constrained transmission grids.<br>International Journal of Hydrogen Energy, 2020, 45, 1255-1266.                              | 7.1  | 18        |
| 43 | Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs. Energy Economics, 2021, 94, 105065.       | 12.1 | 18        |
| 44 | Balancing of Wind Power Variations Using Norwegian Hydro Power. Wind Engineering, 2013, 37, 79-95.                                                                                         | 1.9  | 17        |
| 45 | Emissions of electric vehicle charging in future scenarios: The effects of time of charging. Journal of<br>Industrial Ecology, 2021, 25, 1250-1263.                                        | 5.5  | 15        |
| 46 | Balancing of Variable Wind and Solar Production in Continental Europe with Nordic Hydropower – A<br>Review of Simulation Studies. Energy Procedia, 2016, 87, 91-99.                        | 1.8  | 14        |
| 47 | Using storage devices for compensating uncertainties caused by non-dispatchable generators. , 2006, ,                                                                                      |      | 13        |
| 48 | North Sea offshore network and energy storage for large scale integration of renewables.<br>Sustainable Energy Technologies and Assessments, 2015, 11, 142-147.                            | 2.7  | 13        |
| 49 | Towards a fully integrated North Sea offshore grid: An engineeringâ€economic assessment of a power<br>link island. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e296. | 4.1  | 13        |
| 50 | Internal hydro- and wind portfolio optimisation in real-time market operations. Renewable Energy, 2021, 173, 675-687.                                                                      | 8.9  | 13        |
| 51 | Hydro Power Reservoir Aggregation via Genetic Algorithms. Energies, 2017, 10, 2165.                                                                                                        | 3.1  | 12        |
| 52 | Interactive protocols for distributed energy resource management systems (DERMS). IET Generation, Transmission and Distribution, 2020, 14, 2065-2081.                                      | 2.5  | 12        |
| 53 | Enhanced primary frequency control from EVs: a fleet management strategy to mitigate effects of response discreteness. IET Smart Grid, 2019, 2, 436-444.                                   | 2.2  | 11        |
| 54 | Convex Models for Optimal Utility-Based Distributed Generation Allocation in Radial Distribution Systems. IEEE Systems Journal, 2018, 12, 3497-3508.                                       | 4.6  | 10        |

MAGNUS KORPAS

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Multiple Nash Equilibria in Electricity Markets With Price-Making Hydrothermal Producers. IEEE<br>Transactions on Power Systems, 2019, 34, 422-431.                                      | 6.5 | 10        |
| 56 | Smoothing of Offshore Wind Power Variations with Norwegian Pumped Hydro: Case Study. Energy<br>Procedia, 2016, 87, 61-68.                                                                | 1.8 | 9         |
| 57 | Flexibility of controllable power transformers for managing wind uncertainty using robust adjustable linearised optimal power flow. IET Renewable Power Generation, 2019, 13, 262-272.   | 3.1 | 9         |
| 58 | Pricing electricity in constrained networks dominated by stochastic renewable generation and electric energy storage. Electric Power Systems Research, 2021, 197, 107169.                | 3.6 | 9         |
| 59 | Impact of Offshore Wind Power on System Adequacy in a Regional Hydro-based Power System with<br>Weak Interconnections. Energy Procedia, 2012, 24, 131-142.                               | 1.8 | 7         |
| 60 | A supervised learning approach for optimal selection of bidding strategies in reservoir hydro.<br>Electric Power Systems Research, 2020, 187, 106496.                                    | 3.6 | 7         |
| 61 | Modelling of Environmental Constraints for Hydropower Optimization Problems $\hat{a} \in \hat{a}$ a Review. , 2020, , .                                                                  |     | 7         |
| 62 | A Model for Techno-Economic Optimization of Wind Power Combined with Hydrogen Production in<br>Weak Grids. EPE Journal (European Power Electronics and Drives Journal), 2009, 19, 52-59. | 0.7 | 6         |
| 63 | Medium-Term Hydropower Scheduling with Variable Head under Inflow, Energy and Reserve Capacity<br>Price Uncertainty. Energies, 2019, 12, 189.                                            | 3.1 | 6         |
| 64 | Hydrogen as Part of a 100% Clean Energy System: Exploring Its Decarbonization Roles. IEEE Power and<br>Energy Magazine, 2022, 20, 85-95.                                                 | 1.6 | 6         |
| 65 | Valuation of stored energy in dynamic optimal power flow of distribution systems with energy storage. , 2016, , .                                                                        |     | 5         |
| 66 | Provision of rotating reserves from wind power in a hydro-dominated power system. , 2016, , .                                                                                            |     | 5         |
| 67 | Introducing system flexibility to a multinational transmission expansion planning model. , 2016, , .                                                                                     |     | 5         |
| 68 | The impact of electrification on power system in Northern Europe. , 2017, , .                                                                                                            |     | 5         |
| 69 | Value comparison of EV and house batteries at end-user level under different grid tariffs. , 2018, , .                                                                                   |     | 5         |
| 70 | Planning and Operation of Large Offshore Wind Farms in Areas with Limited Power Transfer Capacity.<br>Wind Engineering, 2012, 36, 69-80.                                                 | 1.9 | 4         |
| 71 | Norwegian pumped hydro for providing peaking power in a low-carbon European power market<br>— Cost comparison against OCGT and CCGT. , 2015, , .                                         |     | 4         |
| 72 | Validation study of an approximate 2014 European powerâ€flow model using PowerGAMA. IET<br>Generation, Transmission and Distribution, 2017, 11, 392-400.                                 | 2.5 | 4         |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Integration of PEV and PV in Norway using multi-period ACOPF — Case study. , 2017, , .                                                                             |     | 4         |
| 74 | Computational Efficiency Assessment of Multi-Period AC Optimal Power Flow including Energy Storage Systems. , 2018, , .                                            |     | 4         |
| 75 | Interaction of DSO and local energy systems through network tariffs. , 2019, , .                                                                                   |     | 4         |
| 76 | Control strategies for residential battery energy storage systems coupled with PV systems. , 2017, , .                                                             |     | 3         |
| 77 | BATTPOWER Toolbox: Memory-Efficient and High-Performance Multi-Period AC Optimal Power Flow Solver. IEEE Transactions on Power Systems, 2021, 36, 3921-3937.       | 6.5 | 3         |
| 78 | On the profit variability of power plants in a system with large-scale renewable energy sources. , 2015, , .                                                       |     | 2         |
| 79 | Balancing needs and measures in the future West Central European power system with large shares of wind and solar resources. , 2017, , .                           |     | 2         |
| 80 | Agent Based Modelling and Simulation of Plug-In Electric Vehicles Adoption in Norway. , 2018, , .                                                                  |     | 2         |
| 81 | BATTPOWER application: Large-scale integration of EVs in an active distribution grid – A Norwegian case study. Electric Power Systems Research, 2022, 209, 107967. | 3.6 | 2         |
| 82 | Coordination of hydro and wind power in a transmission constrained area using SDDP. , 2016, , .                                                                    |     | 1         |
| 83 | Assessing the economic impacts for outages of HVDC-cables connecting the Nordic area and continental Europe. , 2016, , .                                           |     | 1         |
| 84 | Regional effects of hydrogen production in congested transmission grids with wind and hydro power. , 2017, , .                                                     |     | 1         |
| 85 | Demand response with shiftable volume in an equilibrium model of the power system. , 2017, , .                                                                     |     | 1         |
| 86 | Impact of Grid Tariffs Design on the Zero Emission Neighborhoods Energy System Investments. , 2019, , .                                                            |     | 1         |
| 87 | Hydropower in Evolving Electricity Markets. , 2022, , 176-185.                                                                                                     |     | 1         |
| 88 | Medium-term hydropower scheduling with provision of capacity reserves and inertia. , 2016, , .                                                                     |     | 0         |
| 89 | Impact of inertial response requirements on a multi area renewable network. , 2017, , .                                                                            |     | 0         |
| 90 | Market Power in Hydro-Thermal Systems with Marginal Cost Bidding. , 2018, , .                                                                                      |     | 0         |

Market Power in Hydro-Thermal Systems with Marginal Cost Bidding. , 2018, , . 90

6