## Igor Kovalev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651818/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | N-(5′-phenyl-[2,2′-bipyridin]-6-ylmethylene)cyclohexanamine as an acyclic surrogate of<br>2,2′:6′,2″-terpyridines: Photophysical studies and sensory response toward Zn2+. AIP Conference<br>Proceedings, 2022, , .   | 0.3 | 0         |
| 2  | Conditions for the Synthesis of 4,5-Diaryl-3-hydroxy-2,2'-bipyridine-6-carbonitriles by the Reaction of 1,2,4-Triazine-5-carbonitriles with 2-Aminooxazoles. Russian Journal of Organic Chemistry, 2022, 58, 175-179. | 0.3 | 5         |
| 3  | Direct Câ^'H Functionalization of Calix[ <i>n</i> ](het)arenes ( <i>n</i> =4,6): A Brief Update.<br>ChemistrySelect, 2022, 7, .                                                                                       | 0.7 | 2         |
| 4  | Synthesis of new water-soluble polyarene-substituted naphtho[1,2-d]oxazole-based fluorophores as fluorescent dyes and biological photosensitizers. Dyes and Pigments, 2022, 204, 110410.                              | 2.0 | 1         |
| 5  | Mechanochemically Induced Cross Dehydrogenative Coupling Reactions under Ball Milling. Advanced Synthesis and Catalysis, 2022, 364, 2462-2478.                                                                        | 2.1 | 8         |
| 6  | Computer vision <i>vs.</i> spectrofluorometer-assisted detection of common nitro-explosive components with <i>bola</i> -type PAH-based chemosensors. RSC Advances, 2021, 11, 25850-25857.                             | 1.7 | 5         |
| 7  | Intramolecular oxazole-olefin Diels–Alder reactions: A review of the last two decades. Synthetic<br>Communications, 2021, 51, 1782-1797.                                                                              | 1.1 | 1         |
| 8  | (E)-6-(2-Arylvinyl)-2,2′-bipyridines: a convenient synthesis and fluorescent properties. Russian Chemical<br>Bulletin, 2021, 70, 999-1001.                                                                            | 0.4 | 6         |
| 9  | Bispyrenylalkane Chemosensor for the Naked-eye Detection of Nitro-explosives. Chimica Techno Acta, 2021, 8, 20218209.                                                                                                 | 0.3 | 0         |
| 10 | Detection of Anti-viral Drug Riamilovir and Herbicides in Aqueous Media by Using Pyrene-based<br>Fluorescent Chemosensors. Chimica Techno Acta, 2021, 8, 20218208.                                                    | 0.3 | 0         |
| 11 | Pyrene-1-carboxylic acid polyethylene glycol esters: synthesis and photophysical studies. Russian<br>Chemical Bulletin, 2021, 70, 1174-1179.                                                                          | 0.4 | 2         |
| 12 | 2-Aminooxazoles as novel dienophiles in the inverse demand Diels–Alder reaction with 1,2,4-triazines.<br>Mendeleev Communications, 2021, 31, 542-544.                                                                 | 0.6 | 17        |
| 13 | Azapyrene-based fluorophores: synthesis and photophysical properties. New Journal of Chemistry, 2021, 45, 20955-20971.                                                                                                | 1.4 | 10        |
| 14 | Pyrene-based lipophilic/biphilic chemosensors for the fluorescence "turn-off―detection of<br>nitroanalytes in aqueous media. AIP Conference Proceedings, 2021, , .                                                    | 0.3 | 0         |
| 15 | Efficient Synthesis of 5-[3(4)-(5-Phenyl-1,3,4-oxаdiаzol-2-yl)Âanilino]-1,2,4-triаzines. Russian Journal of<br>Organic Chemistry, 2021, 57, 1753-1756.                                                                | 0.3 | 2         |
| 16 | Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chemistry, 2020, 22, 302-315.                                                                                                   | 4.6 | 135       |
| 17 | Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba<br>marine demosponge. Materials Science and Engineering C, 2020, 109, 110566.                                          | 3.8 | 53        |
| 18 | Rational synthetic methods in creating promising (hetero)aromatic molecules and materials.<br>Mendeleev Communications, 2020, 30, 537-554.                                                                            | 0.6 | 17        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neutral Lanthanide Complexes of 3â€Arylâ€6â€{quinolinâ€2â€yl)picolinic Acids: Synthesis and Photophysical<br>Studies. ChemistrySelect, 2020, 5, 9210-9213.                                                       | 0.7 | 2         |
| 20 | X-Ray Diffraction Structural Studies of a Series of 4-Aryl-1-di- and<br>4-Aryl-1-trichloromethylisoquinolines and Their 1,2,4-Triazine Precursors. Russian Journal of General<br>Chemistry, 2020, 90, 1192-1196. | 0.3 | 1         |
| 21 | Recent advances in the synthesis of fluorinated compounds <i>via</i> an aryne intermediate. Organic<br>and Biomolecular Chemistry, 2020, 18, 9562-9582.                                                          | 1.5 | 8         |
| 22 | Green synthetic approaches for practically relevant (hetero)macrocycles: An overview. AIP<br>Conference Proceedings, 2020, , .                                                                                   | 0.3 | 1         |
| 23 | Synthesis and Luminescent Properties of Functionalized Bipyridyl Based Eu Complexes.<br>ChemistrySelect, 2020, 5, 9180-9183.                                                                                     | 0.7 | 2         |
| 24 | Visual detection of nitro-explosives by using<br>10-(4,5-di-p-tolyl-1H-1,2,3-triazol-1-yl)-2,3-dimethoxypyrido[1,2-a]indole. AIP Conference Proceedings, 2020,<br>, .                                            | 0.3 | 0         |
| 25 | Pyrene-derived grignard reagent(s): Preparation and use in key carbonylation/carboxylation reactions.<br>AIP Conference Proceedings, 2020, , .                                                                   | 0.3 | 0         |
| 26 | Rapid metal free construction of 3-positioned 2-pyridyl substituent in indoles. Mendeleev<br>Communications, 2020, 30, 712-713.                                                                                  | 0.6 | 5         |
| 27 | Synthesis of 2-imidazolines by co-grinding of N-tosylaziridines and nitriles. Mendeleev<br>Communications, 2020, 30, 188-189.                                                                                    | 0.6 | 3         |
| 28 | Direct Asymmetric Arylation of Imines. Advanced Synthesis and Catalysis, 2020, 362, 4293-4324.                                                                                                                   | 2.1 | 24        |
| 29 | Direct Introduction of a Methyl Group at the C5â€Position of 1,2,4â€Triazines: Convenient Synthesis of<br>6â€Functionalized 5â€Arylâ€2,2′â€bipyridines. ChemistrySelect, 2020, 5, 2753-2755.                     | 0.7 | 7         |
| 30 | Polynuclear Aromatic Amines as N-Nucleophiles in the ipso-Substitution of the Cyano Group in 1,2,4-Triazines. Russian Journal of Organic Chemistry, 2020, 56, 335-338.                                           | 0.3 | 5         |
| 31 | Preparation of α-dichloromethyl- and α-trichloromethyl-pyridines in the reaction of<br>3-trichloromethyl-1,2,4-triazines with 2,5-norbornadiene. AIP Conference Proceedings, 2020, , .                           | 0.3 | 2         |
| 32 | pH-color changing of 1,3,4-oxadiazoles. AIP Conference Proceedings, 2020, , .                                                                                                                                    | 0.3 | 1         |
| 33 | New monomers for (bi)pyridine-containing polymers. Chimica Techno Acta, 2020, 7, 209-214.                                                                                                                        | 0.3 | 0         |
| 34 | Synthesis of meso-2,2'-bipyridyl-substituted calix[4]arenes and their response to metal cations.<br>Chimica Techno Acta, 2020, 7, 215-221.                                                                       | 0.3 | 2         |
| 35 | "Green" solvent-economic synthesis of<br>5,11,17,23,29,35,41,47-octa-tert-butyl-49,50,51,52,53,54,55,56-octaoxycalix[8]arene. AIP Conference<br>Proceedings, 2020, , .                                           | 0.3 | 0         |
| 36 | Synthesis of 5-(4-methoxyphenyl)-2,2′-bipyridine-based Schiff base with pyrene moiety. AIP Conference<br>Proceedings, 2020, , .                                                                                  | 0.3 | 0         |

| #  | Article                                                                                                                                                                                                                                   | IF             | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 37 | POPOP analogue synthesis using click reaction. AIP Conference Proceedings, 2020, , .                                                                                                                                                      | 0.3            | 0         |
| 38 | Synthesis of furfural from pre-ball-milled sunflower husks. AIP Conference Proceedings, 2020, , .                                                                                                                                         | 0.3            | 0         |
| 39 | 2,7-diehtynyl-10-(pyridin-2-yl)-12,13-dihydro-11H-dibenzo[f,h]cyclopenta[c]quinoline as potential monomer for creating polymers for different tasks. AIP Conference Proceedings, 2020, , .                                                | 0.3            | 1         |
| 40 | 2-Azaanthracene (microreview). Chemistry of Heterocyclic Compounds, 2019, 55, 505-507.                                                                                                                                                    | 0.6            | 3         |
| 41 | СЕfunctionalization of (hetero)arenes with ethyne and ethene moieties. Chemistry of Heterocyclic<br>Compounds, 2019, 55, 490-504.                                                                                                         | 0.6            | 7         |
| 42 | New Push-Pull Fluorophores on the Basis of 6-Alkoxy-2,2'-Bipyridines: Rational Synthetic Approach and<br>Photophysical Properties. Chemistry of Heterocyclic Compounds, 2019, 55, 554-559.                                                | 0.6            | 15        |
| 43 | A Convenient Synthetic Approach to Phenazone Derivatives Containing a 1,2,4-Triazine or Pyridine<br>Fragment. Russian Journal of Organic Chemistry, 2019, 55, 886-889.                                                                    | 0.3            | 4         |
| 44 | Pyrene-derived benzimidazoles as fluorescent sensors for detection of fluoride anion. AIP Conference<br>Proceedings, 2019, , .                                                                                                            | 0.3            | 3         |
| 45 | 2-Azaanthracenes: a chronology of synthetic approaches and bright prospects for practical applications. New Journal of Chemistry, 2019, 43, 11382-11390.                                                                                  | 1.4            | 6         |
| 46 | Highlyâ€Luminescent DTTAâ€Appended Waterâ€Soluble Lanthanide Complexes of 4â€(Het)arylâ€2,2′â€bipyri<br>Synthesis and Photophysical Properties. ChemistrySelect, 2019, 4, 6377-6381.                                                      | idines:<br>0.7 | 9         |
| 47 | Reactions of Perylene with Aryne Intermediates. Russian Journal of Organic Chemistry, 2019, 55, 409-411.                                                                                                                                  | 0.3            | 1         |
| 48 | Preparation of monoethanolamine and 5-phenyl-2,2′-bipyridine derivatives and their subsequent tosylation reactions. AIP Conference Proceedings, 2019, , .                                                                                 | 0.3            | 0         |
| 49 | Complex of Cadmium(II) Iodide with 3,4-Diphenyl-1-(Pyridin-2-yl)-6,7-Dihydro-5H-Cyclopenta[c]pyridine:<br>Synthesis and X-ray Diffraction Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya<br>Khimiya, 2019, 45, 92-96. | 0.3            | 1         |
| 50 | One-Step Synthesis of 5-Methyl-1,2,4-triazines by the Transformation of Their 5-Phenacyl Derivatives.<br>Russian Journal of Organic Chemistry, 2019, 55, 266-268.                                                                         | 0.3            | 4         |
| 51 | Synthesis of pyrazinamide analogues. AIP Conference Proceedings, 2019, , .                                                                                                                                                                | 0.3            | 0         |
| 52 | Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Advanced Synthesis and Catalysis, 2019, 361, 2161-2214.                                                                                                              | 2.1            | 67        |
| 53 | Preparation of indole-containing 3-(2-pyridyl)-1,2,4-triazines as tryptamine derivatives. AIP Conference<br>Proceedings, 2019, , .                                                                                                        | 0.3            | 2         |
| 54 | Interaction of 3- and 6-unsubstituted 1,2,4-triazines with lithium salt of phenylacetylene. AIP<br>Conference Proceedings, 2019, , .                                                                                                      | 0.3            | 2         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Detection of nitroaromatic explosives by<br>2-amino-3-ethoxycarbonyl-6-(1-methylindol-3-yl)-5-(4-chlorophenyl)-pyrazine and its derivatives. AIP<br>Conference Proceedings, 2019, , .                                                      | 0.3 | 1         |
| 56 | Preparation of 1-dichloromethyl- and 1-trichloromethylisoquinolines by a one-step reaction of 1,2,4-triazines with 1,2-dehydrobenzene. Chemistry of Heterocyclic Compounds, 2019, 55, 1124-1127.                                           | 0.6 | 2         |
| 57 | Synthesis and photophysical studies of new organic-soluble lanthanide complexes of<br>4-(4-alkoxyphenyl)-2,2′-bipyridine-6-carboxylic acids. Journal of Molecular Structure, 2019, 1176, 583-590.                                          | 1.8 | 9         |
| 58 | Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based<br>"push-pull―fluorophores. Dyes and Pigments, 2019, 162, 324-330.                                                                         | 2.0 | 11        |
| 59 | Studies on the interactions of 5- <i>R</i> -3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand<br>aza-Diels–Alder reaction <i>versus</i> aryne-mediated domino process. Organic and Biomolecular<br>Chemistry, 2018, 16, 5119-5135. | 1.5 | 43        |
| 60 | Tripod-type 2,2′-bipyridine ligand for lanthanide cations: synthesis and photophysical studies on coordination to transition metal cations. Canadian Journal of Chemistry, 2018, 96, 419-424.                                              | 0.6 | 3         |
| 61 | Pot, Atom, Step Economic (PASE) Approach towards ( <i>Aza</i> )â€2,2′â€Bipyridines: Synthesis and<br>Photophysical Studies. ChemistrySelect, 2018, 3, 340-347.                                                                             | 0.7 | 9         |
| 62 | Synthesis and luminescence of new water-soluble lanthanide complexes of DTTA-containing<br>4-(4-methoxyphenyl)-2,2′-bipyridine. Inorganica Chimica Acta, 2018, 478, 49-53.                                                                 | 1.2 | 10        |
| 63 | An Efficient Cyanide-Free Approach towards 1-(2-Pyridyl)isoquinoline-3-carbonitriles via the Reaction<br>of 5-Phenacyl-1,2,4-triazines with 1,2-Dehydrobenzene in the Presence of Alkyl Nitrites. Synlett, 2018, 29,<br>483-488.           | 1.0 | 8         |
| 64 | Synthesis, photochemical and luminescent properties of ortho-hydroxystyrylquinazolinone-linked benzocrown ethers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 16-28.                                               | 2.0 | 7         |
| 65 | 1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water. New Journal of Chemistry, 2018, 42, 19864-19871.                                                                         | 1.4 | 17        |
| 66 | A Modified Synthesis of 6-Aryl-3-(6-R-pyridin-2-yl)-1,2,4-triazines. Russian Journal of Organic Chemistry,<br>2018, 54, 1576-1578.                                                                                                         | 0.3 | 6         |
| 67 | Substitution of Cyano Group in Position 5 of 1,2,4-Triazines by Carboxylic Acid Hydrazide Residues under Solvent-Free Conditions. Russian Journal of Organic Chemistry, 2018, 54, 509-511.                                                 | 0.3 | 5         |
| 68 | Mono―and Polyazatriphenyleneâ€Based Ligands: An Updated Library of Synthetic Strategies (2001–2018).<br>European Journal of Organic Chemistry, 2018, 2018, 4351-4375.                                                                      | 1.2 | 9         |
| 69 | An efficient synthetic approach towards new 5,5'-diaryl-2,2'-bipyridine-based fluorophores. Chinese<br>Chemical Letters, 2017, 28, 1099-1103.                                                                                              | 4.8 | 10        |
| 70 | Solvent-free synthesis of 5-(aryl/alkyl)amino-1,2,4-triazines and α-arylamino-2,2′-bipyridines with greener<br>prospects. RSC Advances, 2017, 7, 9610-9619.                                                                                | 1.7 | 39        |
| 71 | Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New Journal of Chemistry, 2017, 41, 2309-2320.                                                                  | 1.4 | 29        |
| 72 | DTTA-appended 6-phenyl- and 5,6-diphenyl-2,2′-bipyridines as new water soluble ligands for lanthanide cations. Polyhedron, 2017, 134, 59-64.                                                                                               | 1.0 | 16        |

| #  | Article                                                                                                                                                                                                                                                                                  | IF                | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 73 | Transformations of 6,7-difluoroquinoxaline with Indoles: Synthesis of Indole-Substituted<br>6,7-difluoroquinoxalines and Tris(indol-3-yl)methane Derivatives. Chemistry of Natural Compounds,<br>2017, 53, 519-522.                                                                      | 0.2               | 2         |
| 74 | Unsymmetrically functionalized 5,5″-diaryl- and 5,6,5″-triaryl-2,2′:6′,2″-terpyridines: an efficient synt<br>route and photophysical properties. Canadian Journal of Chemistry, 2017, 95, 851-857.                                                                                       | hetic<br>0.6      | 7         |
| 75 | Solvent-free reaction of 1,2,4-triazine-5-carbonitriles with 4-(cyclohex-1-en-1-yl)morpholine.<br>Unexpected decyanation in addition to classical aza-Diels–Alder reaction. Russian Journal of Organic<br>Chemistry, 2017, 53, 99-102.                                                   | 0.3               | 6         |
| 76 | 3,4,5,6-Tetrafluoro-1,2-dehydrobenzene in reactions with 1,2,4-triazines. Journal of the Iranian Chemical Society, 2017, 14, 1507-1512.                                                                                                                                                  | 1.2               | 8         |
| 77 | Effect of substituent in pyridine-2-carbaldehydes on their heterocyclization to 1,2,4-triazines and 1,2,4-triazine 4-oxides. Russian Journal of Organic Chemistry, 2017, 53, 963-970.                                                                                                    | 0.3               | 11        |
| 78 | One-pot non-cyanide synthesis of 1-(pyridin-2-yl)isoquinoline-3-carbonitrile by reaction of<br>1-phenyl-2-[6-phenyl-3-(pyridin-2-yl)-1,2,4-triazin-5-yl]ethanone with 1,2-dehydrobenzene in the presence<br>of isoamyl nitrite. Russian Journal of Organic Chemistry, 2017, 53, 959-961. | 0.3               | 3         |
| 79 | Detection of small signals in mass spectra. Technical Physics, 2017, 62, 1411-1414.                                                                                                                                                                                                      | 0.2               | 0         |
| 80 | Solvent-free synthesis of (poly)thiacalix[n]arenes: the evaluation of possible mechanism based on semi-preparative HPLC separation and mass-spectrometric investigation of the reaction products. Arkivoc, 2017, 2017, 159-171.                                                          | 0.3               | 3         |
| 81 | The synthesis of 1,2,4-triazines bearing the residues of higher alcohols in the<br>5-positionÂviaÂtheÂipso-substitution of cyano group under the solvent-free conditions. Chimica Techno<br>Acta, 2017, 4, 112-119.                                                                      | 0.3               | 1         |
| 82 | Synthesis of a new DTTA- and 5-phenyl-2,2′-bipyridine-based ditopic ligand and its Eu <sup>3+</sup> complex. Canadian Journal of Chemistry, 2016, 94, 599-603.                                                                                                                           | 0.6               | 15        |
| 83 | Fluorescent Detection of 2,4â€DNT and 2,4,6â€TNT in Aqueous Media by Using Simple Waterâ€6oluble Pyrene<br>Derivatives. Chemistry - an Asian Journal, 2016, 11, 775-781.                                                                                                                 | 1.7               | 44        |
| 84 | Convenient synthesis of α-dichloromethylpyridines from 3-trichloromethyl-1,2,4-triazines. Mendeleev<br>Communications, 2016, 26, 220-222.                                                                                                                                                | 0.6               | 12        |
| 85 | A one-pot approach to 10-(1 H -1,2,3-triazol-1-yl)pyrimido[1,2- a ]indoles via aryne-mediated transformations of 3-(pyrimidin-2-yl)-1,2,4-triazines. Tetrahedron Letters, 2016, 57, 3862-3865.                                                                                           | 0.7               | 22        |
| 86 | Solvent-free reaction of 3-aryl-6-(3-nitrophenyl)-1,2,4-triazines with 4-(cyclohex-1-en-1-yl)morpholine.<br>Russian Journal of Organic Chemistry, 2016, 52, 1036-1038.                                                                                                                   | 0.3               | 3         |
| 87 | 3-Cyano-2-azaanthracene-based "push-pull―fluorophores: A one-step preparation from<br>5-cyano-1,2,4-triazines and 2,3-dehydronaphthalene, generated in situ. Tetrahedron Letters, 2016, 57,<br>5639-5643.                                                                                | 0.7               | 24        |
| 88 | An efficient synthetic approach to 4′,5,5″-triaryl-2,2′:6′,2″-terpyridines. Tetrahedron Letters, 2016, 5<br>296-299.                                                                                                                                                                     | 57 <sub>0.7</sub> | 13        |
| 89 | Synthesis and characterizations of new cadmium complexes based on poly(aza)arene-annelated 2,2′-bipyridines. Polyhedron, 2016, 110, 235-240.                                                                                                                                             | 1.0               | 3         |
| 90 | Solvent-free synthesis of pillar[6]arenes. Green Chemistry, 2016, 18, 423-426.                                                                                                                                                                                                           | 4.6               | 39        |

| #   | Article                                                                                                                                                                                                                                              | IF           | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 91  | Synthesis of substituted 4,4´-dihalobiphenyls and their use for the preparation of isomeric bis(carbazolyl)biphenyls. Russian Chemical Bulletin, 2015, 64, 1978-1981.                                                                                | 0.4          | 2         |
| 92  | Functionalized 2-(5-arylpyridin-2-yl)quinolines: synthesis and photophysical properties. Russian<br>Chemical Bulletin, 2015, 64, 872-877.                                                                                                            | 0.4          | 8         |
| 93  | Preparation of 5,6´-diaryl-2,2´-bipyridines using a 1,2,4-triazine methodology. Russian Chemical Bulletin, 2015, 64, 897-900.                                                                                                                        | 0.4          | 7         |
| 94  | Organolithium compounds in the nucleophilic substitution of hydrogen in arenes and hetarenes.<br>Russian Chemical Reviews, 2015, 84, 1191-1225.                                                                                                      | 2.5          | 22        |
| 95  | Synthesis of unsymmetric 6,6Â^-diaryl-2,2Â^-bipyridines using a 1,2,4-triazine methodology. Russian<br>Chemical Bulletin, 2015, 64, 695-698.                                                                                                         | 0.4          | 5         |
| 96  | Aryne approach towards 2,3-difluoro-10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Mendeleev<br>Communications, 2015, 25, 13-14.                                                                                                                    | 0.6          | 20        |
| 97  | Effective synthetic approach to 4′,5-Diaryl-2,2′:6′,2″-terpyridines. Russian Journal of Organic Chemistry 2015, 51, 1162-1165.                                                                                                                       | <b>'</b> 0.3 | 7         |
| 98  | Reaction of 4,5-dimethoxy-1,2-dehydrobenzene with 3-(Pyridin-2-yl)-1,2,4-triazines. Russian Journal of<br>Organic Chemistry, 2015, 51, 1170-1173.                                                                                                    | 0.3          | 13        |
| 99  | Reaction of lithium 2-arylethynides with 6-aryl-3-(2-pyridyl)-1,2,4-triazines as an access to<br>6-aryl-5-arylvinyl-3-(2-pyridyl)-1,2,4-triazines. Mendeleev Communications, 2015, 25, 332-333.                                                      | 0.6          | 12        |
| 100 | Features of quinoxaline reactions with C-nucleophiles: Examples of dimerization of heterocycle in course of hydrogen substitution. Russian Journal of General Chemistry, 2015, 85, 1635-1638.                                                        | 0.3          | 2         |
| 101 | Role of polar solvents for the synthesis of pillar[6]arenes. RSC Advances, 2015, 5, 104284-104288.                                                                                                                                                   | 1.7          | 16        |
| 102 | Chemosensors for detection of nitroaromatic compounds (explosives). Russian Chemical Reviews, 2014, 83, 783-819.                                                                                                                                     | 2.5          | 76        |
| 103 | Synthesis of 1-functionalized pyrenes from 1-lithiopyrene, and their application as fluorescent probes<br>for the components of the Ginkgo biloba L. leaves extract. Russian Chemical Bulletin, 2014, 63, 1312-1316.                                 | 0.4          | 5         |
| 104 | Mass spectrometric studies of self-condensation products of cyclohexanone under alkaline<br>conditions and synthesis of dodecahydrotriphenylene and triphenylene from easily available<br>reactants. Russian Chemical Bulletin, 2014, 63, 1539-1542. | 0.4          | 2         |
| 105 | Nucleophilic dimerization of indoline under oxidative conditions. Mendeleev Communications, 2014, 24, 40-41.                                                                                                                                         | 0.6          | 2         |
| 106 | (Benzo[h])Quinolinyl-Substituted Monoazatriphenylenes: Synthesis and Photophysical Properties.<br>Chemistry of Heterocyclic Compounds, 2014, 50, 864-870.                                                                                            | 0.6          | 11        |
| 107 | The Extension of Conjugated System in Pyridyl-Substituted Monoazatriphenylenes for the Tuning of<br>Photophysical Properties. Chemistry of Heterocyclic Compounds, 2014, 50, 871-879.                                                                | 0.6          | 11        |
| 108 | Preparation of 3-Cyano-1-(2-Pyridyl)Isoquinolines by Using Aryne Intermediates. Chemistry of Heterocyclic Compounds, 2014, 50, 907-910.                                                                                                              | 0.6          | 34        |

| #   | Article                                                                                                                                                                                                                                                      | IF                   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|
| 109 | Synthesis of 8,10-dimethyl-1,10b-dihydro[1,3,5]triazino-[2,1-a]isoindole-2,4,6(3H)-trione by Direct<br>arylation of 1,3,5-triazine-2,4(1H,3H)-dione. Russian Journal of Organic Chemistry, 2014, 50, 783-785.                                                | 0.3                  | 2         |
| 110 | The synthesis of polyarene-modified 5-phenyl-2,2'-bipyridines via the methodology and aza-Diels–Alder reaction. Mendeleev Communications, 2014, 24, 117-118.                                                                                                 | 0.6                  | 28        |
| 111 | Unexpected reduction of the nitro group in (3-nitrophenyl)-1,2,4-triazines during their aza-Diels–Alder reaction with 1-morpholinocyclopentene. Mendeleev Communications, 2013, 23, 209-211.                                                                 | 0.6                  | 21        |
| 112 | Preparation of Pyridyl-substituted Monoazatriphenylenes. Chemistry of Heterocyclic Compounds, 2013, 49, 500-502.                                                                                                                                             | 0.6                  | 19        |
| 113 | Preparation of triazatriphenylene cations, promising chemosensors for nitro compounds. Chemistry of Heterocyclic Compounds, 2013, 49, 503-505.                                                                                                               | 0.6                  | 7         |
| 114 | Synthesis, thermal transformations, and mass spectrometric fragmentation of<br>4,4'-[1,2-bis(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethane-1,2-diyl]-bis(5-methyl-2-phenyl-1,2-dihydro-3H-py<br>Chemistry of Heterocyclic Compounds, 2013, 49, 545-550. | yr <b>azo</b> l-3-or | ne).      |
| 115 | Benzyne-mediated rearrangement of 3-(2-pyridyl)-1,2,4-triazines into<br>10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Tetrahedron Letters, 2013, 54, 6427-6429.                                                                                            | 0.7                  | 33        |
| 116 | Reactions of 3-phenyl-1,2,4-triazine with some C-nucleophiles. Mendeleev Communications, 2013, 23, 294-296.                                                                                                                                                  | 0.6                  | 5         |
| 117 | A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines. Mendeleev Communications, 2013, 23, 142-144.                                                                                                                                            | 0.6                  | 19        |
| 118 | Preparation of (benzo)isoquinolines using in situ generated aryne intermediates. Chemistry of<br>Heterocyclic Compounds, 2013, 48, 1871-1873.                                                                                                                | 0.6                  | 5         |
| 119 | Phenylglyoxal dihydrazones as unexpected products in the synthesis of 1,2,4-triazines by interaction of α-bromoacetophenones and arylhydrazides. Chemistry of Heterocyclic Compounds, 2013, 49, 988-992.                                                     | 0.6                  | 6         |
| 120 | Synthesis of 1-amino-2,5-di(2-thienyl)benzenes as potential monomers for the preparation of hybrid polythiophene anionic sensors. Russian Chemical Bulletin, 2012, 61, 303-307.                                                                              | 0.4                  | 1         |
| 121 | Aryne intermediates in the synthesis of polynuclear heterocyclic systems (Review). Chemistry of<br>Heterocyclic Compounds, 2012, 48, 536-547.                                                                                                                | 0.6                  | 21        |
| 122 | Chichibabin-Type Condensation of Cyclic Ketones with 3-R-1,2,4-triazin-5(4 <i>H</i> )-ones. Journal of Organic Chemistry, 2012, 77, 6007-6013.                                                                                                               | 1.7                  | 9         |
| 123 | Reactions of quinoxaline with 3-methyl-1-phenylpyrazol-5-one. Mendeleev Communications, 2012, 22, 37-38.                                                                                                                                                     | 0.6                  | 9         |
| 124 | Synthesis of symmetrical dicarbazole-biphenyls, components of phosphorescentorganic light-emitting diodes (PHOLEDs) using organocuprates. Chemistry of Heterocyclic Compounds, 2011, 47, 571-574.                                                            | 0.6                  | 5         |
| 125 | Cyclotrimerization of 3-R-1,2,4-Triazin-5(4H)-ones with Cyclic Ketones. Zeitschrift Fur Naturforschung<br>- Section B Journal of Chemical Sciences, 2010, 65, 1359-1362.                                                                                     | 0.3                  | 6         |
|     | Reaction of 2-pyridyllithium with azine N-oxides. Simple and convenient method for the synthesis of                                                                                                                                                          |                      |           |

126 2,2â€<sup>2</sup>-bipyridine 1-oxide and 2,2â€<sup>2</sup>:6â€<sup>2</sup>,2â€<sup>3</sup>:6â€<sup>3</sup>2â€<sup>2</sup>â€<sup>3</sup>-tetrapyridine 1â€<sup>2</sup>-oxide. Chemistry of Heterocyclic Compounds, 2009, 45, 176-181.

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Stable σH-adducts in reactions of ferrocenyllithium with azines. Russian Chemical Bulletin, 2008, 57, 2156-2161.                                                                                                          | 0.4 | 12        |
| 128 | S N H Reaction of lithiated nitronyl nitroxide with quinoline N-oxide. Russian Chemical Bulletin, 2008, 57, 2227-2229.                                                                                                    | 0.4 | 13        |
| 129 | Direct C–C Coupling of Ferrocenyllithium and Azaheterocycles by Nucleophilic Substitution of<br>Hydrogen – Synthesis of Mono- and 1,1′-Diazinylferrocenes. European Journal of Organic Chemistry,<br>2007, 2007, 857-862. | 1.2 | 55        |
| 130 | Synthesis and antiviral activity of 2-amino-3-ethoxycarbonylpyrazine derivatives. Pharmaceutical Chemistry Journal, 2005, 39, 630-635.                                                                                    | 0.3 | 13        |
| 131 | SHN Reactions of Pyrazine N-Oxides and 1,2,4-Triazine 4-Oxides with CH-Active Compounds<br>ChemInform, 2004, 35, no.                                                                                                      | 0.1 | 0         |
| 132 | S N H reactions of pyrazine N-oxides and 1,2,4-triazine 4-oxides with CH-active compounds. Russian Chemical Bulletin, 2003, 52, 1588-1594.                                                                                | 0.4 | 14        |
| 133 | Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 744-750.                                                                                                                                               | 0.3 | 42        |
| 134 | SNH reactions of 1,2,4-triazine N-oxides, pyrazine N-oxides, and pterin N-oxides with arenethiols*.<br>Russian Chemical Bulletin, 2001, 50, 1068-1071.                                                                    | 0.4 | 6         |
| 135 | Title is missing!. Chemistry of Heterocyclic Compounds, 2001, 37, 1136-1140.                                                                                                                                              | 0.6 | 6         |
| 136 | Direct introduction of indoles into 2-aminopyrazine 1-oxides. Mendeleev Communications, 2000, 10, 229-230.                                                                                                                | 0.6 | 4         |