Igor Kovalev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651818/publications.pdf

Version: 2024-02-01

136 papers	1,537 citations	20 h-index	395343 33 g-index
160	160	160	1210
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chemistry, 2020, 22, 302-315.	4.6	135
2	Chemosensors for detection of nitroaromatic compounds (explosives). Russian Chemical Reviews, 2014, 83, 783-819.	2.5	76
3	Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Advanced Synthesis and Catalysis, 2019, 361, 2161-2214.	2.1	67
4	Direct C–C Coupling of Ferrocenyllithium and Azaheterocycles by Nucleophilic Substitution of Hydrogen – Synthesis of Mono- and 1,1′-Diazinylferrocenes. European Journal of Organic Chemistry, 2007, 2007, 857-862.	1.2	55
5	Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Materials Science and Engineering C, 2020, 109, 110566.	3.8	53
6	Fluorescent Detection of 2,4â€DNT and 2,4,6â€₹NT in Aqueous Media by Using Simple Waterâ€Soluble Pyrene Derivatives. Chemistry - an Asian Journal, 2016, 11, 775-781.	1.7	44
7	Studies on the interactions of 5- <i>R</i> -3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels–Alder reaction <i>versus</i> aryne-mediated domino process. Organic and Biomolecular Chemistry, 2018, 16, 5119-5135.	1.5	43
8	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 744-750.	0.3	42
9	Solvent-free synthesis of pillar[6]arenes. Green Chemistry, 2016, 18, 423-426.	4.6	39
10	Solvent-free synthesis of 5-(aryl/alkyl)amino-1,2,4-triazines and α-arylamino-2,2′-bipyridines with greener prospects. RSC Advances, 2017, 7, 9610-9619.	1.7	39
11	Preparation of 3-Cyano-1-(2-Pyridyl)Isoquinolines by Using Aryne Intermediates. Chemistry of Heterocyclic Compounds, 2014, 50, 907-910.	0.6	34
12	Benzyne-mediated rearrangement of 3-(2-pyridyl)-1,2,4-triazines into 10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Tetrahedron Letters, 2013, 54, 6427-6429.	0.7	33
13	Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New Journal of Chemistry, 2017, 41, 2309-2320.	1.4	29
14	The synthesis of polyarene-modified 5-phenyl-2,2'-bipyridines via the methodology and aza-Diels–Alder reaction. Mendeleev Communications, 2014, 24, 117-118.	0.6	28
15	3-Cyano-2-azaanthracene-based "push-pull―fluorophores: A one-step preparation from 5-cyano-1,2,4-triazines and 2,3-dehydronaphthalene, generated in situ. Tetrahedron Letters, 2016, 57, 5639-5643.	0.7	24
16	Direct Asymmetric Arylation of Imines. Advanced Synthesis and Catalysis, 2020, 362, 4293-4324.	2.1	24
17	Organolithium compounds in the nucleophilic substitution of hydrogen in arenes and hetarenes. Russian Chemical Reviews, 2015, 84, 1191-1225.	2.5	22
18	A one-pot approach to 10-(1 H -1,2,3-triazol-1-yl)pyrimido[1,2- a]indoles via aryne-mediated transformations of 3-(pyrimidin-2-yl)-1,2,4-triazines. Tetrahedron Letters, 2016, 57, 3862-3865.	0.7	22

#	Article	IF	CITATIONS
19	Aryne intermediates in the synthesis of polynuclear heterocyclic systems (Review). Chemistry of Heterocyclic Compounds, 2012, 48, 536-547.	0.6	21
20	Unexpected reduction of the nitro group in (3-nitrophenyl)-1,2,4-triazines during their aza-Diels–Alder reaction with 1-morpholinocyclopentene. Mendeleev Communications, 2013, 23, 209-211.	0.6	21
21	Aryne approach towards 2,3-difluoro-10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Mendeleev Communications, 2015, 25, 13-14.	0.6	20
22	Preparation of Pyridyl-substituted Monoazatriphenylenes. Chemistry of Heterocyclic Compounds, 2013, 49, 500-502.	0.6	19
23	A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines. Mendeleev Communications, 2013, 23, 142-144.	0.6	19
24	1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water. New Journal of Chemistry, 2018, 42, 19864-19871.	1.4	17
25	Rational synthetic methods in creating promising (hetero)aromatic molecules and materials. Mendeleev Communications, 2020, 30, 537-554.	0.6	17
26	2-Aminooxazoles as novel dienophiles in the inverse demand Diels–Alder reaction with 1,2,4-triazines. Mendeleev Communications, 2021, 31, 542-544.	0.6	17
27	Reaction of 2-pyridyllithium with azine N-oxides. Simple and convenient method for the synthesis of $2,2\hat{a}\in^2$ -bipyridine 1-oxide and $2,2\hat{a}\in^2$: $6\hat{a}\in^2,2\hat{a}\in^3$: $6\hat{a}\in^3$ 2 $\hat{a}\in^3$ -tetrapyridine $1\hat{a}\in^2$ -oxide. Chemistry of Heterocyclic 45, 176-181.	: Coe npou	nds, 2009,
28	Role of polar solvents for the synthesis of pillar[6]arenes. RSC Advances, 2015, 5, 104284-104288.	1.7	16
29	DTTA-appended 6-phenyl- and 5,6-diphenyl-2,2′-bipyridines as new water soluble ligands for lanthanide cations. Polyhedron, 2017, 134, 59-64.	1.0	16
30	Synthesis of a new DTTA- and 5-phenyl-2,2′-bipyridine-based ditopic ligand and its Eu ³⁺ complex. Canadian Journal of Chemistry, 2016, 94, 599-603.	0.6	15
31	New Push-Pull Fluorophores on the Basis of 6-Alkoxy-2,2'-Bipyridines: Rational Synthetic Approach and Photophysical Properties. Chemistry of Heterocyclic Compounds, 2019, 55, 554-559.	0.6	15
32	S N H reactions of pyrazine N-oxides and 1,2,4-triazine 4-oxides with CH-active compounds. Russian Chemical Bulletin, 2003, 52, 1588-1594.	0.4	14
33	Synthesis and antiviral activity of 2-amino-3-ethoxycarbonylpyrazine derivatives. Pharmaceutical Chemistry Journal, 2005, 39, 630-635.	0.3	13
34	S N H Reaction of lithiated nitronyl nitroxide with quinoline N-oxide. Russian Chemical Bulletin, 2008, 57, 2227-2229.	0.4	13
35	Reaction of 4,5-dimethoxy-1,2-dehydrobenzene with 3-(Pyridin-2-yl)-1,2,4-triazines. Russian Journal of Organic Chemistry, 2015, 51, 1170-1173.	0.3	13
36	An efficient synthetic approach to 4′,5,5″-triaryl-2,2′:6′,2″-terpyridines. Tetrahedron Letters, 2016, 5 296-299.	57 _{0.7}	13

3

#	Article	IF	CITATIONS
37	Stable ÏfH-adducts in reactions of ferrocenyllithium with azines. Russian Chemical Bulletin, 2008, 57, 2156-2161.	0.4	12
38	Reaction of lithium 2-arylethynides with 6-aryl-3-(2-pyridyl)-1,2,4-triazines as an access to 6-aryl-5-arylvinyl-3-(2-pyridyl)-1,2,4-triazines. Mendeleev Communications, 2015, 25, 332-333.	0.6	12
39	Convenient synthesis of \hat{l} ±-dichloromethylpyridines from 3-trichloromethyl-1,2,4-triazines. Mendeleev Communications, 2016, 26, 220-222.	0.6	12
40	(Benzo[h])Quinolinyl-Substituted Monoazatriphenylenes: Synthesis and Photophysical Properties. Chemistry of Heterocyclic Compounds, 2014, 50, 864-870.	0.6	11
41	The Extension of Conjugated System in Pyridyl-Substituted Monoazatriphenylenes for the Tuning of Photophysical Properties. Chemistry of Heterocyclic Compounds, 2014, 50, 871-879.	0.6	11
42	Effect of substituent in pyridine-2-carbaldehydes on their heterocyclization to 1,2,4-triazines and 1,2,4-triazine 4-oxides. Russian Journal of Organic Chemistry, 2017, 53, 963-970.	0.3	11
43	Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based "push-pull―fluorophores. Dyes and Pigments, 2019, 162, 324-330.	2.0	11
44	An efficient synthetic approach towards new 5,5'-diaryl-2,2'-bipyridine-based fluorophores. Chinese Chemical Letters, 2017, 28, 1099-1103.	4.8	10
45	Synthesis and luminescence of new water-soluble lanthanide complexes of DTTA-containing 4-(4-methoxyphenyl)-2,2′-bipyridine. Inorganica Chimica Acta, 2018, 478, 49-53.	1.2	10
46	Azapyrene-based fluorophores: synthesis and photophysical properties. New Journal of Chemistry, 2021, 45, 20955-20971.	1.4	10
47	Chichibabin-Type Condensation of Cyclic Ketones with 3-R-1,2,4-triazin-5(4 <i>H</i>)-ones. Journal of Organic Chemistry, 2012, 77, 6007-6013.	1.7	9
48	Reactions of quinoxaline with 3-methyl-1-phenylpyrazol-5-one. Mendeleev Communications, 2012, 22, 37-38.	0.6	9
49	Pot, Atom, Step Economic (PASE) Approach towards (<i>Aza</i>)â€2,2′â€Bipyridines: Synthesis and Photophysical Studies. ChemistrySelect, 2018, 3, 340-347.	0.7	9
50	Mono―and Polyazatriphenyleneâ€Based Ligands: An Updated Library of Synthetic Strategies (2001–2018). European Journal of Organic Chemistry, 2018, 2018, 4351-4375.	1.2	9
51	Highlyâ€Luminescent DTTAâ€Appended Waterâ€Soluble Lanthanide Complexes of 4â€(Het)arylâ€2,2â€2â€bipyrio Synthesis and Photophysical Properties. ChemistrySelect, 2019, 4, 6377-6381.	dines: 0.7	9
52	Synthesis and photophysical studies of new organic-soluble lanthanide complexes of 4-(4-alkoxyphenyl)-2,2′-bipyridine-6-carboxylic acids. Journal of Molecular Structure, 2019, 1176, 583-590.	1.8	9
53	Functionalized 2-(5-arylpyridin-2-yl)quinolines: synthesis and photophysical properties. Russian Chemical Bulletin, 2015, 64, 872-877.	0.4	8
54	3,4,5,6-Tetrafluoro-1,2-dehydrobenzene in reactions with 1,2,4-triazines. Journal of the Iranian Chemical Society, 2017, 14, 1507-1512.	1.2	8

#	Article	IF	CITATIONS
55	An Efficient Cyanide-Free Approach towards 1-(2-Pyridyl)isoquinoline-3-carbonitriles via the Reaction of 5-Phenacyl-1,2,4-triazines with 1,2-Dehydrobenzene in the Presence of Alkyl Nitrites. Synlett, 2018, 29, 483-488.	1.0	8
56	Recent advances in the synthesis of fluorinated compounds <i>via</i> an aryne intermediate. Organic and Biomolecular Chemistry, 2020, 18, 9562-9582.	1.5	8
57	Mechanochemically Induced Cross Dehydrogenative Coupling Reactions under Ball Milling. Advanced Synthesis and Catalysis, 2022, 364, 2462-2478.	2.1	8
58	Preparation of triazatriphenylene cations, promising chemosensors for nitro compounds. Chemistry of Heterocyclic Compounds, 2013, 49, 503-505.	0.6	7
59	Preparation of 5,6´-diaryl-2,2´-bipyridines using a 1,2,4-triazine methodology. Russian Chemical Bulletin, 2015, 64, 897-900.	0.4	7
60	Effective synthetic approach to 4′,5-Diaryl-2,2′:6′,2″-terpyridines. Russian Journal of Organic Chemistry 2015, 51, 1162-1165.	0.3	7
61	Unsymmetrically functionalized 5,5″-diaryl- and 5,6,5″-triaryl-2,2′:6′,2″-terpyridines: an efficient syntl route and photophysical properties. Canadian Journal of Chemistry, 2017, 95, 851-857.	netic 0.6	7
62	Synthesis, photochemical and luminescent properties of ortho-hydroxystyrylquinazolinone-linked benzocrown ethers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 16-28.	2.0	7
63	Đ _i Đ•functionalization of (hetero)arenes with ethyne and ethene moieties. Chemistry of Heterocyclic Compounds, 2019, 55, 490-504.	0.6	7
64	Direct Introduction of a Methyl Group at the C5â€Position of 1,2,4â€Triazines: Convenient Synthesis of 6â€Functionalized 5â€Arylâ€2,2â€2â€bipyridines. ChemistrySelect, 2020, 5, 2753-2755.	0.7	7
65	SNH reactions of 1,2,4-triazine N-oxides, pyrazine N-oxides, and pterin N-oxides with arenethiols*. Russian Chemical Bulletin, 2001, 50, 1068-1071.	0.4	6
66	Title is missing!. Chemistry of Heterocyclic Compounds, 2001, 37, 1136-1140.	0.6	6
67	Phenylglyoxal dihydrazones as unexpected products in the synthesis of 1,2,4-triazines by interaction of î±-bromoacetophenones and arylhydrazides. Chemistry of Heterocyclic Compounds, 2013, 49, 988-992.	0.6	6
68	Solvent-free reaction of 1,2,4-triazine-5-carbonitriles with 4-(cyclohex-1-en-1-yl)morpholine. Unexpected decyanation in addition to classical aza-Diels†Alder reaction. Russian Journal of Organic Chemistry, 2017, 53, 99-102.	0.3	6
69	A Modified Synthesis of 6-Aryl-3-(6-R-pyridin-2-yl)-1,2,4-triazines. Russian Journal of Organic Chemistry, 2018, 54, 1576-1578.	0.3	6
70	2-Azaanthracenes: a chronology of synthetic approaches and bright prospects for practical applications. New Journal of Chemistry, 2019, 43, 11382-11390.	1.4	6
71	(E)-6-(2-Arylvinyl)-2,2′-bipyridines: a convenient synthesis and fluorescent properties. Russian Chemical Bulletin, 2021, 70, 999-1001.	0.4	6
72	Cyclotrimerization of 3-R-1,2,4-Triazin-5(4H)-ones with Cyclic Ketones. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 1359-1362.	0.3	6

#	Article	IF	CITATIONS
73	Synthesis of symmetrical dicarbazole-biphenyls, components of phosphorescentorganic light-emitting diodes (PHOLEDs) using organocuprates. Chemistry of Heterocyclic Compounds, 2011, 47, 571-574.	0.6	5
74	Reactions of 3-phenyl-1,2,4-triazine with some C-nucleophiles. Mendeleev Communications, 2013, 23, 294-296.	0.6	5
75	Preparation of (benzo)isoquinolines using in situ generated aryne intermediates. Chemistry of Heterocyclic Compounds, 2013, 48, 1871-1873.	0.6	5
76	Synthesis of 1-functionalized pyrenes from 1-lithiopyrene, and their application as fluorescent probes for the components of the Ginkgo biloba L. leaves extract. Russian Chemical Bulletin, 2014, 63, 1312-1316.	0.4	5
77	Synthesis of unsymmetric $6,6\mathring{A}$ -diaryl- $2,2\mathring{A}$ -bipyridines using a $1,2,4$ -triazine methodology. Russian Chemical Bulletin, 2015, 64, 695-698.	0.4	5
78	Substitution of Cyano Group in Position 5 of 1,2,4-Triazines by Carboxylic Acid Hydrazide Residues under Solvent-Free Conditions. Russian Journal of Organic Chemistry, 2018, 54, 509-511.	0.3	5
79	Rapid metal free construction of 3-positioned 2-pyridyl substituent in indoles. Mendeleev Communications, 2020, 30, 712-713.	0.6	5
80	Polynuclear Aromatic Amines as N-Nucleophiles in the ipso-Substitution of the Cyano Group in 1,2,4-Triazines. Russian Journal of Organic Chemistry, 2020, 56, 335-338.	0.3	5
81	Computer vision <i>vs. </i> spectrofluorometer-assisted detection of common nitro-explosive components with <i>bola </i> -type PAH-based chemosensors. RSC Advances, 2021, 11, 25850-25857.	1.7	5
82	Conditions for the Synthesis of 4,5-Diaryl-3-hydroxy-2,2'-bipyridine-6-carbonitriles by the Reaction of 1,2,4-Triazine-5-carbonitriles with 2-Aminooxazoles. Russian Journal of Organic Chemistry, 2022, 58, 175-179.	0.3	5
83	Direct introduction of indoles into 2-aminopyrazine 1-oxides. Mendeleev Communications, 2000, 10, 229-230.	0.6	4
84	A Convenient Synthetic Approach to Phenazone Derivatives Containing a 1,2,4-Triazine or Pyridine Fragment. Russian Journal of Organic Chemistry, 2019, 55, 886-889.	0.3	4
85	One-Step Synthesis of 5-Methyl-1,2,4-triazines by the Transformation of Their 5-Phenacyl Derivatives. Russian Journal of Organic Chemistry, 2019, 55, 266-268.	0.3	4
86	Solvent-free reaction of 3-aryl-6-(3-nitrophenyl)-1,2,4-triazines with 4-(cyclohex-1-en-1-yl)morpholine. Russian Journal of Organic Chemistry, 2016, 52, 1036-1038.	0.3	3
87	Synthesis and characterizations of new cadmium complexes based on poly(aza)arene-annelated 2,2′-bipyridines. Polyhedron, 2016, 110, 235-240.	1.0	3
88	One-pot non-cyanide synthesis of 1-(pyridin-2-yl)isoquinoline-3-carbonitrile by reaction of 1-phenyl-2-[6-phenyl-3-(pyridin-2-yl)-1,2,4-triazin-5-yl]ethanone with 1,2-dehydrobenzene in the presence of isoamyl nitrite. Russian Journal of Organic Chemistry, 2017, 53, 959-961.	0.3	3
89	Solvent-free synthesis of (poly)thiacalix[n]arenes: the evaluation of possible mechanism based on semi-preparative HPLC separation and mass-spectrometric investigation of the reaction products. Arkivoc, 2017, 2017, 159-171.	0.3	3
90	Tripod-type 2,2′-bipyridine ligand for lanthanide cations: synthesis and photophysical studies on coordination to transition metal cations. Canadian Journal of Chemistry, 2018, 96, 419-424.	0.6	3

#	Article	IF	CITATIONS
91	2-Azaanthracene (microreview). Chemistry of Heterocyclic Compounds, 2019, 55, 505-507.	0.6	3
92	Pyrene-derived benzimidazoles as fluorescent sensors for detection of fluoride anion. AIP Conference Proceedings, $2019, \ldots$	0.3	3
93	Synthesis of 2-imidazolines by co-grinding of N-tosylaziridines and nitriles. Mendeleev Communications, 2020, 30, 188-189.	0.6	3
94	Mass spectrometric studies of self-condensation products of cyclohexanone under alkaline conditions and synthesis of dodecahydrotriphenylene and triphenylene from easily available reactants. Russian Chemical Bulletin, 2014, 63, 1539-1542.	0.4	2
95	Nucleophilic dimerization of indoline under oxidative conditions. Mendeleev Communications, 2014, 24, 40-41.	0.6	2
96	Synthesis of 8,10-dimethyl-1,10b-dihydro[1,3,5]triazino-[2,1-a]isoindole-2,4,6(3H)-trione by Direct arylation of 1,3,5-triazine-2,4(1H,3H)-dione. Russian Journal of Organic Chemistry, 2014, 50, 783-785.	0.3	2
97	Synthesis of substituted $4,4\hat{A}$ -dihalobiphenyls and their use for the preparation of isomeric bis(carbazolyl)biphenyls. Russian Chemical Bulletin, 2015, 64, 1978-1981.	0.4	2
98	Features of quinoxaline reactions with C-nucleophiles: Examples of dimerization of heterocycle in course of hydrogen substitution. Russian Journal of General Chemistry, 2015, 85, 1635-1638.	0.3	2
99	Transformations of 6,7-difluoroquinoxaline with Indoles: Synthesis of Indole-Substituted 6,7-difluoroquinoxalines and Tris(indol-3-yl)methane Derivatives. Chemistry of Natural Compounds, 2017, 53, 519-522.	0.2	2
100	Preparation of indole-containing 3-(2-pyridyl)-1,2,4-triazines as tryptamine derivatives. AIP Conference Proceedings, 2019, , .	0.3	2
101	Interaction of 3- and 6-unsubstituted 1,2,4-triazines with lithium salt of phenylacetylene. AIP Conference Proceedings, 2019, , .	0.3	2
102	Preparation of 1-dichloromethyl- and 1-trichloromethylisoquinolines by a one-step reaction of 1,2,4-triazines with 1,2-dehydrobenzene. Chemistry of Heterocyclic Compounds, 2019, 55, 1124-1127.	0.6	2
103	Neutral Lanthanide Complexes of 3â€Arylâ€6â€(quinolinâ€2â€yl)picolinic Acids: Synthesis and Photophysical Studies. ChemistrySelect, 2020, 5, 9210-9213.	0.7	2
104	Synthesis and Luminescent Properties of Functionalized Bipyridyl Based Eu Complexes. ChemistrySelect, 2020, 5, 9180-9183.	0.7	2
105	Pyrene-1-carboxylic acid polyethylene glycol esters: synthesis and photophysical studies. Russian Chemical Bulletin, 2021, 70, 1174-1179.	0.4	2
106	Preparation of $\hat{l}\pm$ -dichloromethyl- and $\hat{l}\pm$ -trichloromethyl-pyridines in the reaction of 3-trichloromethyl-1,2,4-triazines with 2,5-norbornadiene. AIP Conference Proceedings, 2020, , .	0.3	2
107	Synthesis of meso-2,2'-bipyridyl-substituted calix[4]arenes and their response to metal cations. Chimica Techno Acta, 2020, 7, 215-221.	0.3	2
108	Efficient Synthesis of 5-[3(4)-(5-Phenyl-1,3,4-oxаdiаzol-2-yl)Âanilino]-1,2,4-triаzines. Russian Journal of Organic Chemistry, 2021, 57, 1753-1756.	0.3	2

#	Article	IF	CITATIONS
109	Direct Câ^'H Functionalization of Calix[$<$ i> $>$ n $<$ /i $>$](het)arenes ($<$ i> $>$ n $<$ /i $>$ =4,6): A Brief Update. ChemistrySelect, 2022, 7, .	0.7	2
110	Synthesis of 1-amino-2,5-di(2-thienyl)benzenes as potential monomers for the preparation of hybrid polythiophene anionic sensors. Russian Chemical Bulletin, 2012, 61, 303-307.	0.4	1
111	Synthesis, thermal transformations, and mass spectrometric fragmentation of 4,4'-[1,2-bis(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethane-1,2-diyl]-bis(5-methyl-2-phenyl-1,2-dihydro-3H-py Chemistry of Heterocyclic Compounds, 2013, 49, 545-550.	r az6 l-3-one	e).
112	Reactions of Perylene with Aryne Intermediates. Russian Journal of Organic Chemistry, 2019, 55, 409-411.	0.3	1
113	Complex of Cadmium(II) Iodide with 3,4-Diphenyl-1-(Pyridin-2-yl)-6,7-Dihydro-5H-Cyclopenta[c]pyridine: Synthesis and X-ray Diffraction Study. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 92-96.	0.3	1
114	Detection of nitroaromatic explosives by 2-amino-3-ethoxycarbonyl-6-(1-methylindol-3-yl)-5-(4-chlorophenyl)-pyrazine and its derivatives. AIP Conference Proceedings, 2019, , .	0.3	1
115	X-Ray Diffraction Structural Studies of a Series of 4-Aryl-1-di- and 4-Aryl-1-trichloromethylisoquinolines and Their 1,2,4-Triazine Precursors. Russian Journal of General Chemistry, 2020, 90, 1192-1196.	0.3	1
116	Green synthetic approaches for practically relevant (hetero)macrocycles: An overview. AIP Conference Proceedings, 2020, , .	0.3	1
117	Intramolecular oxazole-olefin Diels–Alder reactions: A review of the last two decades. Synthetic Communications, 2021, 51, 1782-1797.	1.1	1
118	The synthesis of 1,2,4-triazines bearing the residues of higher alcohols in the 5-positionÂviaÂtheÂipso-substitution of cyano group under the solvent-free conditions. Chimica Techno Acta, 2017, 4, 112-119.	0.3	1
119	pH-color changing of 1,3,4-oxadiazoles. AIP Conference Proceedings, 2020, , .	0.3	1
120	2,7-diehtynyl-10-(pyridin-2-yl)-12,13-dihydro-11H-dibenzo [f,h] cyclopenta [c] quinoline as potential monomer for creating polymers for different tasks. AlP Conference Proceedings, 2020, , .	0.3	1
121	Synthesis of new water-soluble polyarene-substituted naphtho[1,2-d]oxazole-based fluorophores as fluorescent dyes and biological photosensitizers. Dyes and Pigments, 2022, 204, 110410.	2.0	1
122	SHN Reactions of Pyrazine N-Oxides and 1,2,4-Triazine 4-Oxides with CH-Active Compounds ChemInform, 2004, 35, no.	0.1	0
123	Detection of small signals in mass spectra. Technical Physics, 2017, 62, 1411-1414.	0.2	O
124	Preparation of monoethanolamine and 5-phenyl-2,2′-bipyridine derivatives and their subsequent tosylation reactions. AIP Conference Proceedings, 2019, , .	0.3	0
125	Synthesis of pyrazinamide analogues. AIP Conference Proceedings, 2019, , .	0.3	0
126	Visual detection of nitro-explosives by using 10-(4,5-di-p-tolyl-1H-1,2,3-triazol-1-yl)-2,3-dimethoxypyrido[1,2-a]indole. AIP Conference Proceedings, 2020, , .	0.3	O

#	Article	IF	CITATIONS
127	Pyrene-derived grignard reagent(s): Preparation and use in key carbonylation/carboxylation reactions. AIP Conference Proceedings, 2020, , .	0.3	0
128	Bispyrenylalkane Chemosensor for the Naked-eye Detection of Nitro-explosives. Chimica Techno Acta, 2021, 8, 20218209.	0.3	0
129	Detection of Anti-viral Drug Riamilovir and Herbicides in Aqueous Media by Using Pyrene-based Fluorescent Chemosensors. Chimica Techno Acta, 2021, 8, 20218208.	0.3	0
130	New monomers for (bi)pyridine-containing polymers. Chimica Techno Acta, 2020, 7, 209-214.	0.3	0
131	"Green" solvent-economic synthesis of 5,11,17,23,29,35,41,47-octa-tert-butyl-49,50,51,52,53,54,55,56-octaoxycalix[8]arene. AIP Conference Proceedings, 2020, , .	0.3	0
132	Synthesis of 5-(4-methoxyphenyl)-2,2′-bipyridine-based Schiff base with pyrene moiety. AIP Conference Proceedings, 2020, , .	0.3	0
133	POPOP analogue synthesis using click reaction. AIP Conference Proceedings, 2020, , .	0.3	0
134	Synthesis of furfural from pre-ball-milled sunflower husks. AIP Conference Proceedings, 2020, , .	0.3	0
135	Pyrene-based lipophilic/biphilic chemosensors for the fluorescence "turn-off―detection of nitroanalytes in aqueous media. AIP Conference Proceedings, 2021, , .	0.3	0
136	N-($5\hat{a}\in^2$ -phenyl-[2, $2\hat{a}\in^2$ -bipyridin]-6-ylmethylene)cyclohexanamine as an acyclic surrogate of 2, $2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -terpyridines: Photophysical studies and sensory response toward Zn2+. AIP Conference Proceedings, 2022, , .	0.3	0