Bertrand Matthäus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review: Analytical Extraction Methods, Physicochemical Properties and Chemical Composition of Cactus (<i>Opuntia ficus-indica)</i> Seed Oil and Its Biological Activity. Food Reviews International, 2023, 39, 4496-4512.	8.4	2
2	Mitigation of MCPD and glycidyl esters in edible oils. , 2022, , 23-64.		4
3	Quantification of Fatty Acid, Tocopherol and Sterol Contents in Capparis spp. Seed Oils. Erwerbs-Obstbau, 2021, 63, 85-89.	1.3	1
4	Characterisation of different parts from <i>Moringa oleifera</i> regarding protein, lipid composition and extractable phenolic compounds. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 45.	1.4	7
5	Development of Chemometric Models Based on a LC-qToF-MS Approach to Verify the Geographic Origin of Virgin Olive Oil. Foods, 2021, 10, 479.	4.3	8
6	Effect of seeds roasting time on physicochemical properties, oxidative stability, and antioxidant activity of cactus (<i>Opuntia ficusâ€indica</i> L.) seed oil. Journal of Food Processing and Preservation, 2021, 45, e15747.	2.0	11
7	Oil content, lipid profiling and oxidative stability of "Sefri―Moroccan pomegranate (<i>Punica) Tj ETQq1 1 (</i>	0.784314 1.4	rgBT /Overlo
8	Can the water quality influence the chemical composition, sensory properties, and oxidative stability of traditionally extracted argan oil?. Mediterranean Journal of Nutrition and Metabolism, 2021, 14, 383-399.	0.5	8
9	lt is not just a †tradeâ€off': indications for sink―and sourceâ€limitation to vegetative and regenerative growth in an oldâ€growth beech forest. New Phytologist, 2020, 226, 111-125.	7.3	38
10	Profile of Volatile Aroma-Active Compounds of Cactus Seed Oil (Opuntia ficus-indica) from Different Locations in Morocco and Their Fate during Seed Roasting. Foods, 2020, 9, 1280.	4.3	14
11	Oxidative stability of <i>Opuntia ficus-indica</i> seeds oil blending with <i>Moringa oleifera</i> seeds oilâ^†. OCL - Oilseeds and Fats, Crops and Lipids, 2020, 27, 53.	1.4	10
12	Characterization of Phenolic Compounds Extracted from Cold Pressed Cactus (Opuntia ficus-indica) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
13	Effect of almond genotypes on fatty acid composition, tocopherols and mineral contents and bioactive properties of sweet almond (Prunus amygdalus Batsch spp. dulce) kernel and oils. Journal of Food Science and Technology, 2020, 57, 4182-4192.	2.8	22
14	Effect of germination and roasting on oil profile of Moringa oleifera and Moringa peregrina seeds. Journal of Food Measurement and Characterization, 2020, 14, 2220-2229.	3.2	10
15	Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam. Processes, 2020, 8, 542.	2.8	5
16	A comparative study of the properties of 10 variety melon seeds and seed oils. Journal of Food Processing and Preservation, 2020, 44, e14463.	2.0	6
17	Detection of Softâ€Đeodorized Olive Oil and Refined Vegetable Oils in Virgin Olive Oil Using Near Infrared Spectroscopy and Traditional Analytical Parameters. European Journal of Lipid Science and Technology, 2020, 122, 1900355.	1.5	13
18	Changes in Physical and Chemical Properties of Thermally and Oxidatively Degraded Sunflower Oil and Palm Fat. Foods, 2020, 9, 1273.	4.3	12

Bertrand Matthäs

#	Article	IF	CITATIONS
19	The German National Reference Centre for Authentic Food (NRZ-Authent). OCL - Oilseeds and Fats, Crops and Lipids, 2019, 26, 11.	1.4	5
20	Aromaâ€Relevant Volatile Compounds as Markers for the Sensory Quality of Argan Oil. European Journal of Lipid Science and Technology, 2019, 121, 1900279.	1.5	6
21	A Systematic Chemometric Approach to Identify the Geographical Origin of Olive Oils. European Journal of Lipid Science and Technology, 2019, 121, 1900281.	1.5	13
22	Lipid Isolation Process and Study on Some Molecular Species of Polar Lipid Isolated from Seed of Madhuca ellitica. Processes, 2019, 7, 375.	2.8	5
23	Renewable Resources from Insects: Exploitation, Properties, and Refining of Fat Obtained by Coldâ€Pressing from <i>Hermetia illucens</i> (Black Soldier Fly) Larvae. European Journal of Lipid Science and Technology, 2019, 121, 1800376.	1.5	44
24	Effect of maturity stage on the chemical composition of argan fruit pulp. OCL - Oilseeds and Fats, Crops and Lipids, 2019, 26, 15.	1.4	9
25	Authenticity of Edible Oils—Heading for New Methods. European Journal of Lipid Science and Technology, 2019, 121, 1900021.	1.5	1
26	A New Statistical Approach to Describe the Quality of Extra Virgin Olive Oils Using Near Infrared Spectroscopy (NIR) and Traditional Analytical Parameters. European Journal of Lipid Science and Technology, 2019, 121, 1800361.	1.5	11
27	A Comparative Study on Formation of Polar Components, Fatty Acids and Sterols during Frying of Refined Olive Pomace Oil Pure and Its Blend Coconut Oil. Journal of Agricultural and Food Chemistry, 2018, 66, 3514-3523.	5.2	24
28	Bioactive compounds and "in vitro―antioxidant activity of some traditional and non-traditional cold-pressed edible oils from Macedonia. Journal of Food Science and Technology, 2018, 55, 1614-1623.	2.8	18
29	Impact of Added Phytosteryl/Phytostanyl Fatty Acid Esters on Chemical Parameters of Margarines upon Heating and Panâ€Frying. European Journal of Lipid Science and Technology, 2018, 120, 1700281.	1.5	8
30	Microâ€organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. Journal of the Science of Food and Agriculture, 2018, 98, 2147-2155.	3.5	7
31	Is the Profile of Fatty Acids, Tocopherols, and Amino Acids Suitable to Differentiate <i>Pinus armandii</i> Suspicious to Be Responsible for the Pine Nut Syndrome from Other <i>Pinus</i> Species?. Chemistry and Biodiversity, 2018, 15, e1700323.	2.1	13
32	Plant <scp>FA</scp> db: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant Journal, 2018, 96, 1299-1308.	5.7	77
33	Effect of the Harvest Time on Oil Yield, Fatty Acid, Tocopherol and Sterol Contents of Developing Almond and Walnut Kernels. Journal of Oleo Science, 2018, 67, 39-45.	1.4	38
34	Study of Safflower Varieties Cultivated Under Southern Egypt Conditions for Seeds and Flowers. Journal of Biological Sciences, 2018, 18, 74-83.	0.3	4
35	Performance of antioxidative compounds under frying conditions: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 1539-1561.	10.3	52
36	A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. European Food Research and Technology, 2017, 243, 89-99.	3.3	112

#	Article	IF	CITATIONS
37	A new analytical and statistical approach to predict the sensory properties of deep frying fats and oils to determine the point of discard during processing. European Journal of Lipid Science and Technology, 2017, 119, 1600393.	1.5	12
38	Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. European Food Research and Technology, 2017, 243, 1219-1227.	3.3	46
39	A chemometric approach for the differentiation of sensory good and bad (musty/fusty) virgin rapeseed oils on basis of selected volatile compounds analyzed by dynamic headspace GCâ€MS. European Journal of Lipid Science and Technology, 2017, 119, 1600259.	1.5	19
40	Rapeseed hull oil as a source for phytosterols and their separation by organic solvent nanofiltration. European Journal of Lipid Science and Technology, 2017, 119, 1600090.	1.5	2
41	Metabolic Changes during Storage of <i>Brassica napus</i> Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil. Journal of Agricultural and Food Chemistry, 2017, 65, 11073-11084.	5.2	7
42	The biochemical composition of the leaves and seeds meals of <i>moringa</i> species as non-conventional sources of nutrients. Journal of Food Biochemistry, 2017, 41, e12322.	2.9	32
43	Nutritional value and chemical composition of Sudanese millet-based fermented foods as affected by fermentation and method of preparation. Acta Scientiarum Polonorum, Technologia Alimentaria, 2017, 16, 43-51.	0.3	0
44	Possibilities of Sustainable Oil Processing. , 2016, , 473-521.		2
45	Quality control of refined oils mixed with palm oil during repeated deepâ€frying using FTâ€NIRS, GC, HPLC, and multivariate analysis. European Journal of Lipid Science and Technology, 2016, 118, 512-523.	1.5	24
46	Degradation of glycidyl esters in RBD palm oil as a function of storage conditions. European Journal of Lipid Science and Technology, 2016, 118, 418-424.	1.5	6
47	Epoxy fatty acids in used frying fats and oils, edible oils and chocolate and their formation in oils during heating. European Journal of Lipid Science and Technology, 2016, 118, 425-434.	1.5	23
48	Effective lipophilic antioxidant enzymatically derived from Canadian crabapple. European Journal of Lipid Science and Technology, 2016, 118, 919-927.	1.5	11
49	Chemical Characterization and Kinetic parameter determination under Rancimat test conditions of four monovarietal virgin olive oils grown in Morocco. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, A401.	1.4	23
50	The physico-chemical properties of some citrus seeds and seed oils. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2016, 71, 79-85.	1.4	15
51	Some rape/canola seed oils: fatty acid composition and tocopherols. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2016, 71, 73-77.	1.4	46
52	Acrylamide in ready-to-eat foods. , 2016, , 353-382.		2
53	Contaminants in edible fats and oils - fresh news. European Journal of Lipid Science and Technology, 2016, 118, 337-338.	1.5	2
54	Chemotaxonomic Screening of Seed Oils from the Family Saxifragaceae and Comparison with Data on Seed Oils from Grossulariaceae Obtained from Literature. Chemistry and Biodiversity, 2016, 13, 1511-1520.	2.1	2

#	Article	IF	CITATIONS
55	3â€MCPD―and glycidyl esters can be mitigated in vegetable oils by use of short path distillation. European Journal of Lipid Science and Technology, 2016, 118, 396-405.	1.5	41
56	Simultaneous determination of capsaicin and dihydrocapsaicin for vegetable oil adulteration by immunoaffinity chromatography cleanup coupled with LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1021, 137-144.	2.3	32
57	Fatty acid composition and tocopherol content of the kernel oil from apricot varieties (Hasanbey,) Tj ETQq1 1 0. Technology, 2016, 242, 221-226.	784314 rg 3.3	gBT /Overlock 34
58	The chemical parameters and oxidative resistance to heat treatment of refined and extra virgin Moroccan Picholine olive oil. Journal of Taibah University for Science, 2016, 10, 100-106.	2.5	29
59	Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils. Antioxidants, 2015, 4, 124-133.	5.1	65
60	Phenolic compounds of three unconventional Sudanese oils. Acta Scientiarum Polonorum, Technologia Alimentaria, 2015, 14, 63-69.	0.3	7
61	Detection of virgin coconut oil adulteration with animal fats using quantitative cholesterol by GC×GC–TOF/MS analysis. Food Chemistry, 2015, 178, 128-135.	8.2	39
62	Fatty acid composition, tocopherol, and sterol contents of sumac (<i>Rhus coriaria</i> L.) fruit oils. European Journal of Lipid Science and Technology, 2015, 117, 1301-1302.	1.5	10
63	Quality evaluation of coldâ€pressed edible oils from Macedonia. European Journal of Lipid Science and Technology, 2015, 117, 2023-2035.	1.5	42
64	Quality parameters for the evaluation of cold-pressed edible argan oil. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2015, 10, 143-154.	1.4	13
65	Enzymatic lipophilization of phenolic extract from rowanberry (Sorbus aucuparia) and evaluation of antioxidative activity in edible oil. LWT - Food Science and Technology, 2015, 60, 56-62.	5.2	20
66	Impact of Canololâ€Enriched Extract from Heatâ€Treated Canola Meal to Enhance Oil Quality Parameters in Deepâ€Frying: a Comparison with Rosemary Extract and TBHQâ€Fortified Oil Systems. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 2065-2076.	1.9	17
67	Stability of rice bran oil extracted by SFE and soxhlet methods during accelerated shelf-life storage. Grasas Y Aceites, 2014, 65, e013.	0.9	17
68	Mitigation of MCPD and Glycidyl Esters in Edible Oils. , 2014, , 23-55.		9
69	Deepâ€ f at frying – An ancient popular process with a lot of open questions. European Journal of Lipid Science and Technology, 2014, 116, 667-668.	1.5	2
70	Phenolic extracts from Sorbus aucuparia (L.) and Malus baccata (L.) berries: Antioxidant activity and performance in rapeseed oil during frying and storage. Food Chemistry, 2014, 159, 273-281.	8.2	84
71	Phenolic extract from wild rose hip with seed: Composition, antioxidant activity, and performance in canola oil. European Journal of Lipid Science and Technology, 2014, 116, 1025-1034.	1.5	21
72	Monitoring of Quality and Stability Characteristics and Fatty Acid Compositions of Refined Olive and Seed Oils during Repeated Pan- and Deep-Frying Using GC, FT-NIRS, and Chemometrics. Journal of Agricultural and Food Chemistry, 2014, 62, 10357-10367.	5.2	64

Bertrand MatthÃ**u**s

#	Article	IF	CITATIONS
73	Phenolic extracts from CrataegusÂ×Âmordenensis and Prunus virginiana: Composition, antioxidant activity and performance in sunflower oil. LWT - Food Science and Technology, 2014, 59, 308-319.	5.2	21
74	Fatty acid, tocopherol and squalene contents of Rosaceae seed oils. , 2014, 55, 48.		16
75	Oxidation and structural decomposition of fats and oils at elevated temperatures. European Journal of Lipid Science and Technology, 2014, 116, 1457-1466.	1.5	28
76	Acrylamide – Still a matter of concern for fried potato food?*. European Journal of Lipid Science and Technology, 2014, 116, 675-687.	1.5	34
77	Stabilization of refined rapeseed oil during deepâ€fat frying by selected herbs*. European Journal of Lipid Science and Technology, 2014, 116, 771-779.	1.5	20
78	Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol. OCL - Oilseeds and Fats, Crops and Lipids, 2014, 21, D103.	1.4	14
79	Temperature Dependency When Generating Glycidyl and 3â€MCPD Esters from Diolein. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1449-1454.	1.9	30
80	Mitigation of 3â€MCPD and glycidyl esters within the production chain of vegetable oils especially palm oil. Lipid Technology, 2013, 25, 151-155.	0.3	61
81	Influence of precursors on the formation of 3â€MCPD and glycidyl esters in a model oil under simulated deodorization conditions. European Journal of Lipid Science and Technology, 2013, 115, 286-294.	1.5	75
82	Influence of chloride and glycidylâ€ester on the generation of 3â€ <scp>MCPD</scp> ―and glycidylâ€esters. European Journal of Lipid Science and Technology, 2013, 115, 735-739.	1.5	49
83	Quality Parameters for Cold Pressed Edible Argan Oils. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	4
84	Fatty Acid, Tocopherol and Sterol Contents of Forest Pine Seed Oil. Asian Journal of Chemistry, 2013, 25, 9845-9847.	0.3	2
85	Organic or not organic – that is the question: How the knowledge about the origin of chlorinated compounds can help to reduce formation of 3â€MCPD esters. European Journal of Lipid Science and Technology, 2012, 114, 1333-1334.	1.5	13
86	The new databaseSeed Oil Fatty Acids(SOFA). Lipid Technology, 2012, 24, 230-234.	0.3	14
87	Generation of 3-monochloro-1,2-propanediol and related materials from tri-, di-, and monoolein at deodorization temperature. European Journal of Lipid Science and Technology, 2012, 114, 1268-1273.	1.5	44
88	Optimization of ultrasonicâ€assisted extraction of 3â€monochloropropaneâ€1,2â€diol (MCPD) and analysis of its esters from edible oils by gas chromatography–mass spectrometry. Journal of Separation Science, 2012, 35, 2241-2248.	2.5	10
89	The comparison of properties of the oil and kernels of various hazelnuts from Germany and Turkey. European Journal of Lipid Science and Technology, 2012, 114, 801-806.	1.5	18
90	The database <i>Seed Oil Fatty Acids</i> (SOFA) is back on the Internet!. European Journal of Lipid Science and Technology, 2012, 114, 701-702.	1.5	6

#	Article	IF	CITATIONS
91	Oil Technology. , 2012, , 23-92.		27
92	Oxidative stability of edible argan oil: A two-year study. LWT - Food Science and Technology, 2011, 44, 1-8.	5.2	80
93	Lipid evaluation of cultivated and wild carob (Ceratonia siliqua L.) seed oil growing in Turkey. Scientia Horticulturae, 2011, 130, 181-184.	3.6	18
94	Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia) Tj ETQq0 0 0 r	gB <u>T</u> /Over	lock 10 Tf 50
95	Effect of Stripping Methods on the Oxidative Stability of Three Unconventional Oils. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 603-609.	1.9	11
96	Comparison of Supercritical Fluid and Hexane Extraction Methods in Extracting Kenaf (<i>Hibiscus) Tj ETQq0 0 0</i>	rgBT /Ove	erlock 10 Tf 5
97	Fatty Acids, Tocopherols and Sterols of <i>Cephalocroton cordofanus</i> in Comparison with Sesame, Cotton, and Groundnut Oils. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1297-1303.	1.9	19
98	Strategies for the reduction of 3â€MCPD esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology, 2011, 113, 380-386.	1.5	131
99	On the necessity of edible oil refining and possible sources of 3â€MCPD and glycidyl esters. European Journal of Lipid Science and Technology, 2011, 113, 368-373.	1.5	118
100	Carbon dioxide blanketing impedes the formation of 4â€hydroxynonenal and acrylamide during frying. A novel procedure for HNE quantification. European Journal of Lipid Science and Technology, 2011, 113, 916-923.	1.5	10
101	3â€MCPD and glycidyl fatty acid esters: What is the knowledge today?. European Journal of Lipid Science and Technology, 2011, 113, 277-278.	1.5	8
102	Fatty Acids, Tocopherols, Phenolics and the Antimicrobial Effect of <i>Sclerocarya birrea</i> Kernels with Different Harvesting Dates. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 377-384.	1.9	22
103	<i>Annona squamosa</i> and <i>Catunaregam nilotica</i> Seeds, the Effect of the Extraction Method on the Oil Composition. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 763-769.	1.9	26
104	Antioxidant activity of extracts from six different Sudanese plant materials. European Journal of Lipid Science and Technology, 2010, 112, 1263-1269.	1.5	10
105	Effect of processing on the quality of edible argan oil. Food Chemistry, 2010, 120, 426-432.	8.2	102
106	Chemical evaluation of some paprika (<i>Capsicum annuum</i> L.) seed oils. European Journal of Lipid Science and Technology, 2009, 111, 1249-1254.	1.5	22
107	Chemical and Sensory Characteristics of Products Fried in Highâ€Oleic, Lowâ€Linolenic Rapeseed Oil. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 799-808.	1.9	28
108	Chemical Characterization of the Seed and Antioxidant Activity of Various Parts of Salvadora persica. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 857-865.	1.9	20

Bertrand Matthäs

#	Article	IF	CITATIONS
109	A Comparative Study of the Properties of Six Sudanese Cucurbit Seeds and Seed Oils. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 1181.	1.9	54
110	FATTY ACIDS AND TOCOPHEROL CONTENTS OF SOME <i>PRUNUS</i> SPP. KERNEL OILS. Journal of Food Lipids, 2009, 16, 187-199.	1.0	64
111	The DGF Rapeseed Oil Award – A tool to improve the quality of virgin edible rapeseed oil. Lipid Technology, 2008, 20, 31-34.	0.3	8
112	Short-chain fatty acids as marker for the degradation of frying fats and oils. Lipid Technology, 2008, 20, 60-63.	0.3	10
113	Why is it so difficult to produce highâ€quality virgin rapeseed oil for human consumption?. European Journal of Lipid Science and Technology, 2008, 110, 611-617.	1.5	31
114	Virgin grape seed oil: Is it really a nutritional highlight?. European Journal of Lipid Science and Technology, 2008, 110, 645-650.	1.5	99
115	Sensory assessment of virgin rapeseed oils. European Journal of Lipid Science and Technology, 2008, 110, 608-610.	1.5	29
116	Virgin hemp seed oil: An interesting niche product. European Journal of Lipid Science and Technology, 2008, 110, 655-661.	1.5	112
117	Bitter offâ€taste in stored coldâ€pressed linseed oil obtained from different varieties. European Journal of Lipid Science and Technology, 2008, 110, 625-631.	1.5	36
118	Virgin sunflower oil. European Journal of Lipid Science and Technology, 2008, 110, 618-624.	1.5	41
119	What we know and what we should know about virgin oils – a general introduction. European Journal of Lipid Science and Technology, 2008, 110, 597-601.	1.5	35
120	Virgin oils – The return of a long known product. European Journal of Lipid Science and Technology, 2008, 110, 595-596.	1.5	18
121	FATTY ACIDS, TOCOPHEROLS, STEROLS, PHENOLIC PROFILES AND OXIDATIVE STABILITY OF CUCUMIS MELO VAR. AGRESTIS OIL. Journal of Food Lipids, 2008, 15, 56-67.	1.0	35
122	ANTIBACTERIAL ACTIVITY OF <i>ASPONGOPUS VIDUATUS</i> (MELON BUG) OIL. Journal of Food Safety, 2008, 28, 577-586.	2.3	13
123	Antioxidant properties of methanolic extracts from different parts of <i>Sclerocarya birrea</i> . International Journal of Food Science and Technology, 2008, 43, 921-926.	2.7	30
124	Identification of Bitter Off-Taste Compounds in the Stored Cold Pressed Linseed Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 7864-7868.	5.2	62
125	Oil Technology. Advances in Botanical Research, 2007, , 483-527.	1.1	10
126	Use of palm oil for frying in comparison with other high-stability oils. European Journal of Lipid Science and Technology, 2007, 109, 400-409.	1.5	106

Bertrand Matthäs

#	Article	IF	CITATIONS
127	Quantitation of Fatty Acids, Sterols, and Tocopherols in Turpentine (Pistacia terebinthus Chia) Growing Wild in Turkey. Journal of Agricultural and Food Chemistry, 2006, 54, 7667-7671.	5.2	75
128	Hempseed Oil—Influence of the Genotype on the Composition in a Two-Year Study. Journal of Industrial Hemp: Production, Processing and Products, 2006, 10, 45-65.	0.1	15
129	Frying quality and oxidative stability of two unconventional oils. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 529-538.	1.9	48
130	Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. European Journal of Lipid Science and Technology, 2006, 108, 200-211.	1.5	135
131	Effects of processing on the quality and stability of three unconventional Sudanese oils. European Journal of Lipid Science and Technology, 2006, 108, 298-308.	1.5	22
132	Antioxidant activity of extracts from <i>Sclerocarya birrea</i> kernel oil cake. Grasas Y Aceites, 2006, 57, .	0.9	16
133	IMPROVING THE OXIDATIVE STABILITY OF SUNFLOWER OIL BY BLENDING WITH SCLEROCARYA BIRREA AND ASPONGOPUS VIDUATUS OILS. Journal of Food Lipids, 2005, 12, 150-158.	1.0	37
134	Anti-nutritive constituents in oilseed crops from Italy. Industrial Crops and Products, 2005, 21, 89-99.	5.2	46
135	Glucosinolates and Fatty Acid, Sterol, and Tocopherol Composition of Seed Oils fromCapparis spinosaVar.spinosaandCapparis ovataDesf. Var.canescens(Coss.) Heywood. Journal of Agricultural and Food Chemistry, 2005, 53, 7136-7141.	5.2	88
136	FATTY ACID, TOCOPHEROL AND STEROL COMPOSITION AS WELL AS OXIDATIVE STABILITY OF THREE UNUSUAL SUDANESE OILS. Journal of Food Lipids, 2004, 11, 179-189.	1.0	62
137	Factors affecting the concentration of acrylamide during deep-fat frying of potatoes. European Journal of Lipid Science and Technology, 2004, 106, 793-801.	1.5	144
138	FA and tocopherol composition of Vietnamese oilseeds. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 1013-1020.	1.9	67
139	Quality of cold-pressed edible rapeseed oil in Germany. Molecular Nutrition and Food Research, 2003, 47, 413-419.	0.0	40
140	A new database for seed oil fatty acids — the database SOFA. European Journal of Lipid Science and Technology, 2003, 105, 92-103.	1.5	52
141	Glucosinolate Composition of Young Shoots and Flower Buds of Capers (<i>Capparis</i> Species) Growing Wild in Turkey. Journal of Agricultural and Food Chemistry, 2002, 50, 7323-7325.	5.2	57
142	Comparison of different methods for the determination of the oil content in oilseeds. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 95-102.	1.9	57
143	Glucosinolates in Members of the Family Brassicaceae:Â Separation and Identification by LC/ESI-MS-MS. Journal of Agricultural and Food Chemistry, 2000, 48, 2234-2239.	5.2	62
144	Extraction of oilseeds by SFE - a comparison with other methods for the determination of the oil content. Fresenius' Journal of Analytical Chemistry, 1999, 364, 631-634.	1.5	36

#	Article	IF	CITATIONS
145	Comparison of a supercritical fluid extraction method for the extraction of oilseeds with the DCF standard method B-I 5 (87). Lipid - Fett, 1999, 101, 203-206.	0.4	10
146	Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Lipid - Fett, 1998, 100, 295-301.	0.4	31
147	Determination of phytic acid and its degradation products in extracts of rape seeds and rapeseed meal. Journal of High Resolution Chromatography, 1995, 18, 267-268.	1.4	10