Diana F Tomback

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651604/publications.pdf

Version: 2024-02-01

201674 182427 2,694 69 27 51 citations h-index g-index papers 69 69 69 2181 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Limitations to Propagule Dispersal Will Constrain Postfire Recovery of Plants and Fungi in Western Coniferous Forests. BioScience, 2022, 72, 347-364.	4.9	21
2	Effective actions for managing resilient high elevation five-needle white pine forests in western North America at multiple scales under changing climates. Forest Ecology and Management, 2022, 505, 119939.	3.2	1
3	Tamm review: Current and recommended management practices for the restoration of whitebark pine (Pinus albicaulis Engelm.), an imperiled high-elevation Western North American forest tree. Forest Ecology and Management, 2022, 522, 119929.	3.2	13
4	Soil moisture regime and canopy closure structure subalpine understory development during the first three decades following fire. Forest Ecology and Management, 2021, 483, 118783.	3.2	5
5	Postâ€fire conifer regeneration hinders digital estimation of understorey plant cover in subalpine forest vegetation. Applied Vegetation Science, 2021, 24, e12609.	1.9	O
6	Climateâ€altered fire regimes may increase extirpation risk in an upper subalpine conifer species of management concern. Ecosphere, 2020, 11, e03220.	2.2	9
7	Community Structure and Functional Role of Limber Pine (Pinus flexilis) in Treeline Communities in Rocky Mountain National Park. Forests, 2020, 11, 838.	2.1	O
8	Temporal and energetic drivers of seed resource use by Clark's nutcracker, keystone seed disperser of coniferous forests. Ecosphere, 2020, 11, e03085.	2.2	5
9	Survival of Whitebark Pine Seedlings Grown from Direct Seeding: Implications for Regeneration and Restoration under Climate Change. Forests, 2019, 10, 677.	2.1	11
10	Loss of foundation species revisited: conceptual framework with lessons learned from eastern hemlock and whitebark pine. Ecosphere, 2019, 10, e02917.	2.2	12
11	Whitebark Pine Prevalence and Ecological Function in Treeline Communities of the Greater Yellowstone Ecosystem, U.S.A.: Potential Disruption by White Pine Blister Rust. Forests, 2018, 9, 635.	2.1	5
12	Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423.	2.5	2
13	Energetic behavioural-strategy prioritization of Clark's nutcrackers in whitebark pine communities: An agent-based modeling approach. Ecological Modelling, 2017, 354, 123-139.	2.5	8
14	Weather radar data correlate to hailâ€induced mortality in grassland birds. Remote Sensing in Ecology and Conservation, 2017, 3, 90-101.	4.3	13
15	Ecotone response to climatic variability depends on stress gradient interactions. Climate Change Responses, 2017, 4, .	2.6	19
16	Evaluating future success of whitebark pine ecosystem restoration under climate change using simulation modeling. Restoration Ecology, 2017, 25, 220-233.	2.9	24
17	Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment. Ecology and Evolution, 2017, 7, 9027-9040.	1.9	17
18	Community Structure, Biodiversity, and Ecosystem Services in Treeline Whitebark Pine Communities: Potential Impacts from a Non-Native Pathogen. Forests, 2016, 7, 21.	2.1	44

#	Article	IF	CITATIONS
19	Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen. Ecology and Evolution, 2016, 6, 5144-5157.	1.9	14
20	The Importance of Conifers for Facilitation at Treeline: Comparing Biophysical Characteristics of Leeward Microsites in Whitebark Pine Communities. Arctic, Antarctic, and Alpine Research, 2016, 48, 427-444.	1.1	22
21	The effects of seed source health on whitebark pine (<i>Pinus albicaulis</i>) regeneration density after wildfire. Canadian Journal of Forest Research, 2015, 45, 1597-1606.	1.7	25
22	Blood from a turnip: tissue origin of low-coverage shotgun sequencing libraries affects recovery of mitogenome sequences. Mitochondrial DNA, 2015, 26, 384-388.	0.6	9
23	Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome Assemblies. PLoS ONE, 2014, 9, e106649.	2.5	30
24	Relative Abundance and Functional Role of Whitebark Pine at Treeline in the Northern Rocky Mountains. Arctic, Antarctic, and Alpine Research, 2014, 46, 407-418.	1.1	17
25	Predicting Functional Role and Occurrence of Whitebark Pine (<i>Pinus albicaulis</i>) at Alpine Treelines: Model Accuracy and Variable Importance. Annals of the American Association of Geographers, 2014, 104, 703-722.	3.0	16
26	Cascading effects of feedbacks, disease, and climate change on alpine treeline dynamics. Environmental Modelling and Software, 2014, 62, 85-96.	4.5	19
27	Development and characterization of thirteen microsatellite loci in Clark's nutcracker (Nucifraga) Tj ETQq1 🛚	1 0.78431	4 rgBT /Overl
28	Topographic influences on the distribution of white pine blister rust in <i>Pinus albicaulis</i> treeline communities. Ecoscience, 2013, 20, 215-229.	1.4	22
29	Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake. PLoS ONE, 2012, 7, e30953.	2.5	208
30	Whitebark Pine Stand Condition, Tree Abundance, and Cone Production as Predictors of Visitation by Clark's Nutcracker. PLoS ONE, 2012, 7, e37663.	2.5	45
31	The Need to Quantify Ecosystem Services Provided by Birds. Auk, 2011, 128, 1-14.	1.4	256
32	Clark's Nutcrackers Harvest Sugar Pine Seeds from Cones. Western North American Naturalist, 2010, 70, 413-414.	0.4	4
33	Invasive pathogen threatens bird–pine mutualism: implications for sustaining a highâ€elevation ecosystem. Ecological Applications, 2009, 19, 597-607.	3.8	73
34	Variant maturity in seed structures of Pinus albicaulis (Engelm.) and Pinus sibirica (Du Tour): key to a soil seed bank, unusual among conifers?. Trees - Structure and Function, 2008, 22, 225-236.	1.9	5
35	Blister Rust Prevalence in Krummholz Whitebark Pine: Implications for Treeline Dynamics, Northern Rocky Mountains, Montana, U.S.A. Arctic, Antarctic, and Alpine Research, 2008, 40, 161-170.	1.1	67
36	Invasive Pathogens At Alpine Treeline: Consequences for Treeline Dynamics. Physical Geography, 2007, 28, 397-418.	1.4	67

#	Article	IF	Citations
37	The influence of white pine blister rust on seed dispersal in whitebark pine. Canadian Journal of Forest Research, 2007, 37, 1044-1057.	1.7	42
38	Alpine Treeline of Western North America: Linking Organism-To-Landscape Dynamics. Physical Geography, 2007, 28, 378-396.	1.4	133
39	Life on the edge for limber pine: Seed dispersal within a peripheral population. Ecoscience, 2005, 12, 519-529.	1.4	23
40	The Impact of Seed Dispersal by Clark's Nutcracker on Whitebark Pine: Multi-scale Perspective on a High Mountain Mutualism. , 2005, , 181-201.		13
41	Cone opening phenology, seed dispersal, and seed predation in southwestern white pine (<i>Pinus) Tj ETQq1</i>	1.0,78431	4.rgBT /Ove
42	DELAYED SEED GERMINATION IN WHITEBARK PINE AND REGENERATION PATTERNS FOLLOWING THE YELLOWSTONE FIRES. Ecology, 2001, 82, 2587-2600.	3.2	73
43	Delayed Seed Germination in Whitebark Pine and Regeneration Patterns Following the Yellowstone Fires. Ecology, 2001, 82, 2587.	3.2	3
44	COST OF MUTUALISM: COMPETITION, TREE MORPHOLOGY, AND POLLEN PRODUCTION IN LIMBER PINE CLUSTERS. Ecology, 1999, 80, 324-329.	3.2	17
45	Population genetic structure in a bird-dispersed pine, <i>Pinus albicaulis</i> li>(Pinaceae). Canadian Journal of Botany, 1998, 76, 83-90.	1.1	14
46	A mating system conundrum: hybridization inApocynum(Apocynaceae). American Journal of Botany, 1998, 85, 1316-1323.	1.7	11
47	Population genetic structure in a bird-dispersed pine, <i>Pinus albicaulis</i> (Pinaceae). Canadian Journal of Botany, 1998, 76, 83-90.	1.1	18
48	Tannin and Protein in the Diet of a Food-Hoarding Granivore, the Western Scrub-Jay. Condor, 1996, 98, 474-482.	1.6	24
49	The Effects of Blister Rust on Post-Fire Regeneration of Whitebark Pine: The Sundance Burn of Northern Idaho (U.S.A.). Conservation Biology, 1995, 9, 654-664.	4.7	51
50	Growth form distribution and genetic relationships in tree clusters of Pinus flexilis, a bird-dispersed pine. Oecologia, 1994, 98, 402-411.	2.0	30
51	Post-fire regeneration of <i>Pinusalbicaulis</i> : height–age relationships, age structure, and microsite characteristics. Canadian Journal of Forest Research, 1993, 23, 113-119.	1.7	49
52	Tree Clusters and Growth Form Distribution in Pinus cembra, a Bird-Dispersed Pine. Arctic and Alpine Research, 1993, 25, 374.	1.3	30
53	The evolution of bird-dispersed pines. Evolutionary Ecology, 1990, 4, 185-219.	1.2	175
54	Modelling stand dynamics in whitebark pine (Pinus albicaulis) forests. Ecological Modelling, 1990, 51, 73-95.	2.5	63

#	Article	IF	CITATIONS
55	Measuring Dominance and Constructing Hierarchies: An Example Using Mule Deer. Ethology, 1989, 82, 275-286.	1.1	40
56	Bolus recovery by gray jays: an experimental analysis. Animal Behaviour, 1986, 34, 754-762.	1.9	45
57	Observations on the Behavior and Ecology of the Mariana Crow. Condor, 1986, 88, 398-401.	1.6	6
58	REPLY TO HAFNER AND PETERSEN. Evolution; International Journal of Organic Evolution, 1985, 39, 1177-1179.	2.3	3
59	Seed dispersal by nutcrackers causes multi-trunk growth form in pines. Oecologia, 1985, 67, 107-110.	2.0	57
60	Assortative mating by white-crowned sparrows at song dialect boundaries. Animal Behaviour, 1984, 32, 465-469.	1.9	59
61	Behavioral consequences of song learning: Discrimination of song types by male white-crowned sparrows. Learning and Motivation, 1984, 15, 428-440.	1.2	12
62	REPLY TO "ALLOZYMES AND SONG DIALECTS: A REASSESSMENT― Evolution; International Journal of Organic Evolution, 1984, 38, 449-451.	2.3	30
63	Seed Manipulation by Clark's Nutcracker. Condor, 1983, 85, 372.	1.6	4
64	Dialect Discrimination by White-Crowned Sparrows: Reactions to Near and Distant Dialects. Auk, 1983, 100, 452-460.	1.4	80
65	ALLOZYME FREQUENCIES IN A LINEAR SERIES OF SONG DIALECT POPULATIONS. Evolution; International Journal of Organic Evolution, 1982, 36, 1020-1029.	2.3	75
66	Dispersal of Whitebark Pine Seeds by Clark's Nutcracker: A Mutualism Hypothesis. Journal of Animal Ecology, 1982, 51, 451.	2.8	200
67	Limber Pine Seed Harvest by Clark's Nutcracker in the Sierra Nevada: Timing and Foraging Behavior. Condor, 1980, 82, 467.	1.6	28
68	How Nutcrackers Find Their Seed Stores. Condor, 1980, 82, 10-19.	1.6	130
69	An Emetic Technique to Investigate Food Preferences. Auk, 1975, 92, 581-583.	1.4	17