Siegfried Eigler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie - International Edition, 2014, 53, 7720-7738.	7.2	741
2	Visualization of defect densities in reduced graphene oxide. Carbon, 2012, 50, 3666-3673.	5.4	476
3	Wet Chemical Synthesis of Graphene. Advanced Materials, 2013, 25, 3583-3587.	11.1	453
4	Formation and Decomposition of CO ₂ Intercalated Graphene Oxide. Chemistry of Materials, 2012, 24, 1276-1282.	3.2	231
5	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 2019, 9, 1283-1288.	5.5	216
6	Sulfur Species in Graphene Oxide. Chemistry - A European Journal, 2013, 19, 9490-9496.	1.7	199
7	Graphene oxide: efficiency of reducing agents. Chemical Communications, 2013, 49, 7391.	2.2	118
8	Graphene oxide: a stable carbon framework for functionalization. Journal of Materials Chemistry A, 2013, 1, 11559.	5.2	114
9	Statistical Raman Microscopy and Atomic Force Microscopy on Heterogeneous Graphene Obtained after Reduction of Graphene Oxide. Journal of Physical Chemistry C, 2014, 118, 7698-7704.	1.5	95
10	Defects in Graphene Oxide as Structural Motifs. ChemNanoMat, 2018, 4, 244-252.	1.5	91
11	Brodie's or Hummers' Method: Oxidation Conditions Determine the Structure of Graphene Oxide. Chemistry - A European Journal, 2019, 25, 8955-8959.	1.7	86
12	Graphite sulphate – a precursor to graphene. Chemical Communications, 2015, 51, 3162-3165.	2.2	80
13	Effect of friction on oxidative graphite intercalation and high-quality graphene formation. Nature Communications, 2018, 9, 836.	5.8	79
14	High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing. Journal of Physical Chemistry C, 2016, 120, 3036-3041.	1.5	76
15	New Basic Insight into Reductive Functionalization Sequences of Single Walled Carbon Nanotubes (SWCNTs). Journal of the American Chemical Society, 2013, 135, 18385-18395.	6.6	71
16	Controlled Chemistry Approach to the Oxoâ€Functionalization of Graphene. Chemistry - A European Journal, 2016, 22, 7012-7027.	1.7	68
17	Graphene Oxide: A One- versus Two-Component Material. Journal of the American Chemical Society, 2016, 138, 11445-11448.	6.6	66
18	Endoperoxides Revealed as Origin of the Toxicity of Graphene Oxide. Angewandte Chemie - International Edition, 2016, 55, 405-407.	7.2	62

#	Article	IF	CITATIONS
19	Chemical and electrochemical synthesis of graphene oxide – a generalized view. Nanoscale, 2020, 12, 12731-12740.	2.8	57
20	Controlled functionalization of graphene oxide with sodium azide. Nanoscale, 2013, 5, 12136.	2.8	54
21	Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902653.	10.2	52
22	Determination of the Lateral Dimension of Graphene Oxide Nanosheets Using Analytical Ultracentrifugation. Small, 2015, 11, 814-825.	5.2	51
23	Investigation of the Thermal Stability of the Carbon Framework of Graphene Oxide. Chemistry - A European Journal, 2014, 20, 984-989.	1.7	49
24	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	5.2	49
25	Poly(vinylferrocene)–Reduced Graphene Oxide as a High Power/High Capacity Cathodic Battery Material. Advanced Energy Materials, 2016, 6, 1600108.	10.2	48
26	Kinetic and Mechanistic Studies on the Reaction of Nitric Oxide with a Water-Soluble Octa-anionic Iron(III) Porphyrin Complex. Inorganic Chemistry, 2005, 44, 7717-7731.	1.9	46
27	Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives. Scientific Reports, 2017, 7, 45165.	1.6	44
28	Systematic evaluation of different types of graphene oxide in respect to variations in their in-plane modulus. Carbon, 2017, 114, 700-705.	5.4	44
29	Thermal Disproportionation of Oxoâ€Functionalized Graphene. Angewandte Chemie - International Edition, 2017, 56, 9222-9225.	7.2	38
30	Influence of an Extremely Negatively Charged Porphyrin on the Reversible Binding Kinetics of NO to Fe(III) and the Subsequent Reductive Nitrosylation. Inorganic Chemistry, 2007, 46, 3336-3352.	1.9	35
31	A new parameter based on graphene for characterizing transparent, conductive materials. Carbon, 2009, 47, 2936-2939.	5.4	35
32	Mechanistic Investigations of the Reaction of an Iron(III) Octa-Anionic Porphyrin Complex with Hydrogen Peroxide and the Catalyzed Oxidation of Diammonium-2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate). Inorganic Chemistry, 2009, 48, 7667-7678.	1.9	34
33	Highly Intact and Pure Oxoâ€Functionalized Graphene: Synthesis and Electronâ€Beamâ€Induced Reduction. Angewandte Chemie - International Edition, 2016, 55, 15771-15774.	7.2	34
34	Quantitative investigation of the fragmentation process and defect density evolution of oxo-functionalized graphene due to ultrasonication and milling. Carbon, 2016, 96, 897-903.	5.4	31
35	Identification of Semiconductive Patches in Thermally Processed Monolayer Oxoâ€Functionalized Graphene. Angewandte Chemie - International Edition, 2020, 59, 13657-13662.	7.2	31
36	A facile approach to synthesize an oxo-functionalized graphene/polymer composite for low-voltage operating memory devices. Journal of Materials Chemistry C, 2015, 3, 8595-8604.	2.7	30

#	Article	IF	CITATIONS
37	High quality reduced graphene oxide flakes by fast kinetically controlled and clean indirect UV-induced radical reduction. Nanoscale, 2016, 8, 7572-7579.	2.8	27
38	Mechanistic insights into the reduction of graphene oxide addressing its surfaces. Physical Chemistry Chemical Physics, 2014, 16, 19832-19835.	1.3	25
39	γ-Iron Phase Stabilized at Room Temperature by Thermally Processed Graphene Oxide. Journal of the American Chemical Society, 2018, 140, 9051-9055.	6.6	24
40	Diaminodicyanoquinones: Fluorescent Dyes with High Dipole Moments and Electronâ€Acceptor Properties. Angewandte Chemie - International Edition, 2019, 58, 8235-8239.	7.2	22
41	Region-Selective Self-Assembly of Functionalized Carbon Allotropes from Solution. ACS Nano, 2013, 7, 11427-11434.	7.3	21
42	Effect of the Structure and Morphology of Natural, Synthetic and Post-processed Graphites on Their Dispersibility and Electronic Properties. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 804-823.	1.0	21
43	Investigation of pentaarylazafullerenes as acceptor systems for bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 450-454.	3.0	18
44	Oxoâ€Functionalized Graphene: A Versatile Precursor for Alkylated Graphene Sheets by Reductive Functionalization. Chemistry - A European Journal, 2018, 24, 13348-13354.	1.7	18
45	Towards the Synthesis of Graphene Azide from Graphene Oxide. Molecules, 2015, 20, 21050-21057.	1.7	15
46	Emerging field of few-layered intercalated 2D materials. Nanoscale Advances, 2021, 3, 963-982.	2.2	15
47	Driving forces for the self-assembly of graphene oxide on organic monolayers. Nanoscale, 2014, 6, 11344-11350.	2.8	14
48	Design strategy of a graphene based bio-sensor for glucose. Carbon, 2018, 137, 343-348.	5.4	14
49	Voltage-reduced low-defect graphene oxide: a high conductivity, near-zero temperature coefficient of resistance material. Nanoscale, 2019, 11, 3112-3116.	2.8	14
50	Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch. Chemistry - A European Journal, 2020, 26, 17361-17365.	1.7	14
51	Scalable self-assembled reduced graphene oxide transistors on flexible substrate. Applied Physics Letters, 2014, 104, 243502.	1.5	13
52	Structural factors controlling size reduction of graphene oxide in liquid processing. Carbon, 2017, 125, 360-369.	5.4	13
53	Selective Functionalization of Graphene at Defectâ€Activated Sites by Arylazocarboxylic <i>tert</i> â€Butyl Esters. Angewandte Chemie - International Edition, 2019, 58, 3599-3603.	7.2	13
54	Influence of SiO ₂ or h-BN substrate on the room-temperature electronic transport in chemically derived single layer graphene. RSC Advances, 2019, 9, 38011-38016.	1.7	12

#	Article	lF	CITATIONS
55	Polymerization in Carbone: A Novel Method for the Synthesis of More Sustainable Electrodes and Their Application as Cathodes for Lithium–Organic Energy Storage Materials Based On Vanillin. ACS Sustainable Chemistry and Engineering, 2020, 8, 3055-3064.	3.2	12
56	How fast is the reaction of hydrated electrons with graphene oxide in aqueous dispersions?. Nanoscale, 2015, 7, 19432-19437.	2.8	11
57	Molecular Lipid Films on Microengineering Materials. Langmuir, 2019, 35, 10286-10298.	1.6	11
58	Roomâ€Temperature Transport Properties of Graphene with Defects Derived from Oxoâ€Graphene. Chemistry - A European Journal, 2020, 26, 6484-6489.	1.7	10
59	Evidence for Electron Transfer between Graphene and Nonâ€Covalently Bound Ï€â€Systems. Chemistry - A European Journal, 2020, 26, 6694-6702.	1.7	10
60	Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles. ChemPhotoChem, 2020, 4, 668-673.	1.5	9
61	Wet-chemical synthesis of solution-processible porous graphene via defect-driven etching. Carbon, 2021, 185, 568-577.	5.4	9
62	Regiochemically Oxo-functionalized Graphene, Guided by Defect Sites, as Catalyst for Oxygen Reduction to Hydrogen Peroxide. Journal of Physical Chemistry Letters, 2021, 12, 10009-10014.	2.1	9
63	Thermische Disproportionierung von Oxoâ€funktionalisiertem Graphen. Angewandte Chemie, 2017, 129, 9350-9353.	1.6	8
64	Nahezu vollstädig intaktes und sauberes oxoâ€funktionalisiertes Graphen – Synthese und elektronenstrahlinduzierte Reduktion. Angewandte Chemie, 2016, 128, 16003-16006.	1.6	7
65	A multiwavelength emission detector for analytical ultracentrifugation. Nanoscale Advances, 2019, 1, 4422-4432.	2.2	6
66	Fluorescence Quenching in J-Aggregates through the Formation of Unusual Metastable Dimers. Journal of Physical Chemistry B, 2021, 125, 4438-4446.	1.2	6
67	Interlayer electron modulation in van der Waals heterostructures assembled by stacking monolayer MoS ₂ onto monolayer graphene with different electron transfer ability. Nanoscale, 2021, 13, 15464-15470.	2.8	6
68	Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif. Chemical Communications, 2019, 55, 10515-10518.	2.2	5
69	Controlled assembly of artificial 2D materials based on the transfer of oxo-functionalized graphene. Nanoscale Advances, 2020, 2, 176-181.	2.2	5
70	In situ functionalization of graphene. 2D Materials, 2021, 8, 015022.	2.0	5
71	Focused electron beam based direct-write fabrication of graphene and amorphous carbon from oxo-functionalized graphene on silicon dioxide. Physical Chemistry Chemical Physics, 2017, 19, 2683-2686.	1.3	3
72	Selektive Funktionalisierung von Graphen an defektaktivierten Bereichen durch Arylazocarbonsäreâ€ <i>tert</i> â€butylester. Angewandte Chemie, 2019, 131, 3637-3641.	1.6	3

#	Article	IF	CITATIONS
73	Potentiality of Graphene Oxide and Polyoxometalate as Radionuclides Adsorbent to Restore the Environment after Fukushima Disaster: A Mini Review. Indonesian Journal of Chemistry, 2021, 21, 776.	0.3	3
74	Synthesis of Wetâ€Chemically Prepared Porousâ€Graphene Single Layers on Si/SiO ₂ Substrate Increasing the Photoluminescence of MoS ₂ in Heterostructures. Advanced Materials Interfaces, 2021, 8, 2100783.	1.9	3
75	The importance of molecular structure and functionalization of oxo-graphene sheets for gene silencing. Carbon, 2022, , .	5.4	3
76	Graphene Synthesis. , 2016, , 19-61.		2
77	Controlled Functionalization of Graphene by Oxo-addends. ChemistrySelect, 2017, 2, .	0.7	2
78	Diaminodicyanochinone – Fluoreszenzfarbstoffe mit hohem Dipolmoment und Elektronenakzeptorâ€Eigenschaften. Angewandte Chemie, 2019, 131, 8321-8326.	1.6	2
79	Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes. Journal of Physical Chemistry B, 2021, 125, 1207-1213.	1.2	2
80	Ionâ€Induced Formation of Hierarchical Porous Nitrogenâ€Doped Carbon Materials with Enhanced Oxygen Reduction. ChemCatChem, 2021, 13, 3112-3118.	1.8	2
81	2. Controlled Functionalization of Graphene by Oxo-addends. , 2017, , .		1
82	Identifizierung von halbleitenden Bereichen in thermisch behandeltem monolagigem Oxoâ€funktionalisiertem Graphen. Angewandte Chemie, 2020, 132, 13760-13765.	1.6	1
83	Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores. Physical Chemistry Chemical Physics, 2021, 23, 17521-17529.	1.3	1
84	Graphene Oxide. , 2014, , 1-13.		1
85	Transparent and Electrically Conductive Films from Chemically Derived Graphene. , 0, , .		1
86	Influence of the coffee-ring effect and size of flakes of graphene oxide films on their electrochemical reduction. Physical Chemistry Chemical Physics, 2022, 24, 8076-8080.	1.3	1
87	Resolution of Intramolecular Dipoles and a Push-Back Effect of Individual Molecules on a Metal Surface. Journal of Physical Chemistry C, 2022, 126, 7667-7673.	1.5	1
88	Festkörperchemie. Nachrichten Aus Der Chemie, 2016, 64, 246-254.	0.0	0
89	Hidden Defects and Unexpected Properties of Graphene — How Advanced TEM Contributes to Materials Development. Microscopy and Microanalysis, 2017, 23, 1752-1753.	0.2	0
90	Frontispiece: Brodie's or Hummers' Method: Oxidation Conditions Determine the Structure of Graphene Oxide. Chemistry - A European Journal, 2019, 25, .	1.7	0

#	Article	IF	CITATIONS
91	Synthesis of Wetâ€Chemically Prepared Porousâ€Graphene Single Layers on Si/SiO ₂ Substrate Increasing the Photoluminescence of MoS ₂ in Heterostructures (Adv. Mater. Interfaces) Tj ETQq1 1	. 0 .7.0 4314	l rgBT /Overlc