Donglin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled Growth of High-Quality Monolayer WS ₂ Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013, 7, 8963-8971.	7.3	696
2	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
3	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
4	Toward Single-Layer Uniform Hexagonal Boron Nitride–Graphene Patchworks with Zigzag Linking Edges. Nano Letters, 2013, 13, 3439-3443.	4.5	242
5	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Research, 2015, 8, 3164-3176.	5.8	171
6	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	7.3	158
7	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	4.5	136
8	Direct Growth of High-Quality Graphene on High-κ Dielectric SrTiO ₃ Substrates. Journal of the American Chemical Society, 2014, 136, 6574-6577.	6.6	133
9	All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS ₂ /Graphene Heterostructures. Advanced Materials, 2015, 27, 7086-7092.	11.1	132
10	Fabrication of Monodisperse CeO ₂ Hollow Spheres Assembled by Nano-octahedra. Crystal Growth and Design, 2010, 10, 291-295.	1.4	121
11	Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary. Nano Letters, 2014, 14, 6342-6347.	4.5	116
12	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
13	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	7.3	97
14	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	5.8	94
15	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93
16	Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, 2015, 8, 2881-2890.	5.8	91
17	Temperatureâ€Triggered Sulfur Vacancy Evolution in Monolayer MoS ₂ /Graphene Heterostructures. Small, 2017, 13, 1602967.	5.2	77
18	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69

Donglin

#	Article	lF	CITATIONS
19	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
20	Monolayer MoS ₂ Growth on Au Foils and On‣ite Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	7.8	66
21	Thinning Segregated Graphene Layers on High Carbon Solubility Substrates of Rhodium Foils by Tuning the Quenching Process. ACS Nano, 2012, 6, 10581-10589.	7.3	61
22	Controlled synthesis of 2D Mo ₂ C/graphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. Nanotechnology, 2019, 30, 385601.	1.3	51
23	One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting αâ~'Mo2C. Physical Review B, 2017, 95, .	1.1	49
24	Periodic Modulation of the Doping Level in Striped MoS ₂ Superstructures. ACS Nano, 2016, 10, 3461-3468.	7.3	37
25	Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Research, 2013, 6, 671-678.	5.8	35
26	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	1.9	30
27	Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Physical Review B, 2018, 97, .	1.1	30
28	Scanning tunneling microscopy study of the quasicrystalline 30° twisted bilayer graphene. 2D Materials, 2019, 6, 045041.	2.0	26
29	Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Research, 2013, 6, 887-896.	5.8	22
30	Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms. Small, 2013, 9, 1360-1366.	5.2	21
31	Lattice-Matched Metal–Semiconductor Heterointerface in Monolayer Cu ₂ Te. ACS Nano, 2021, 15, 3415-3422.	7.3	19
32	Modulating the Electronic Properties of Graphene by Self-Organized Sulfur Identical Nanoclusters and Atomic Superlattices Confined at an Interface. ACS Nano, 2018, 12, 10984-10991.	7.3	18
33	Highâ€Quality Monolayer Graphene Synthesis on Pd Foils via the Suppression of Multilayer Growth at Grain Boundaries. Small, 2014, 10, 4003-4011.	5.2	16
34	Controlling the dendritic structure and the photo-electrocatalytic properties of highly crystalline MoS ₂ on sapphire substrate. 2D Materials, 2018, 5, 031015.	2.0	13
35	Controllable synthesis of graphene using novel aromatic 1,3,5-triethynylbenzene molecules on Rh(111). RSC Advances, 2015, 5, 76620-76625.	1.7	6
36	Controllable Growth of MoS ₂ on Au Foils and Its Application in Hydrogen Evolution. Acta Chimica Sinica, 2015, 73, 877.	0.5	6

Donglin

#	Article	IF	CITATIONS
37	Particle-Catalyst-Free Vapor–Liquid–Solid Growth of Millimeter-Scale Crystalline Compound Semiconductors on Nonepitaxial Substrates. ACS Omega, 2020, 5, 9550-9557.	1.6	0
38	Cell-Like Behaviors of Dynamic Graphene Bubbles with Fast Water Transport. ACS Omega, 2020, 5, 28249-28254.	1.6	0