List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly and potential transmission of the <i>Lens culinaris</i> seed microbiome. FEMS Microbiology Ecology, 2022, 97, .	2.7	6
2	Environment has a Stronger Effect than Host Plant Genotype in Shaping Spring <i>Brassica napus</i> Seed Microbiomes. Phytobiomes Journal, 2021, 5, 220-230.	2.7	26
3	Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	153
4	Bacterial Microbiomes Associated with the Rhizosphere, Root Interior, and Aboveground Plant Organs of Wheat and Canola at Different Growth Stages. Phytobiomes Journal, 2021, 5, 442-451.	2.7	11
5	Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Scientific Reports, 2021, 11, 10856.	3.3	24
6	Survival of a commercial AM fungal inoculant and its impact on indigenous AM fungal communities in field soils. Applied Soil Ecology, 2021, 166, 103979.	4.3	15
7	Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Canadian Journal of Microbiology, 2020, 66, 71-85.	1.7	88
8	Responses of arbuscular mycorrhizal fungal communities to soil core transplantation across Saskatchewan prairie climatic regions. Canadian Journal of Soil Science, 2020, 100, 81-96.	1.2	4
9	Phil Chilibeck, new Co-Editor-in-Chief for <i>Applied Physiology, Nutrition, and Metabolism</i> . Applied Physiology, Nutrition and Metabolism, 2020, 45, iii-iii.	1.9	0
10	Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. International Journal of Phytoremediation, 2020, 22, 703-712.	3.1	4
11	Potential use of endophytic root bacteria and host plants to degrade hydrocarbons. International Journal of Phytoremediation, 2019, 21, 928-938.	3.1	34
12	Microbial communities associated with barley growing in an oil sands reclamation area in Alberta, Canada. Canadian Journal of Microbiology, 2018, 64, 1004-1019.	1.7	3
13	Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site. Canadian Journal of Microbiology, 2017, 63, 502-515.	1.7	32
14	Fungal diversity associated with pulses and its influence on the subsequent wheat crop in the Canadian prairies. Plant and Soil, 2017, 414, 13-31.	3.7	66
15	Bacterial Root Microbiome of Plants Growing in Oil Sands Reclamation Covers. Frontiers in Microbiology, 2017, 8, 849.	3.5	80
16	Naturally occurring phenanthrene degrading bacteria associated with seeds of various plant species. International Journal of Phytoremediation, 2016, 18, 423-425.	3.1	2
17	Manipulation of cold stratification and endophytic effects on expression patterns of RSG and KAO genes in coleorhiza of wheat seeds. Plant Growth Regulation, 2016, 79, 219-227.	3.4	8
18	Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biology and Biochemistry, 2015, 80, A3-A9.	8.8	213

#	Article	IF	CITATIONS
19	Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. Journal of Applied Microbiology, 2014, 116, 109-122.	3.1	154
20	Fungal endophyte colonization coincides with altered DNA methylation in drought-stressed wheat seedlings. Canadian Journal of Plant Science, 2014, 94, 223-234.	0.9	22
21	Gene expression patterns in wheat coleorhiza under cold- and biological stratification. Microbiological Research, 2014, 169, 616-622.	5.3	7
22	Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza, 2013, 23, 45-59.	2.8	47
23	Impact of clear cutting on soil microbial communities and bioavailable nutrients in the LFH and Ae horizons of Boreal Plain forest soils. Forest Ecology and Management, 2013, 306, 88-95.	3.2	22
24	Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Applied Soil Ecology, 2013, 72, 22-30.	4.3	50
25	Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 2012, 90, 137-149.	1.0	133
26	A chronsequential approach to investigating microbial community shifts following clearcutting in Boreal Plain forest soils. Canadian Journal of Forest Research, 2012, 42, 2078-2089.	1.7	11
27	Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Applied Soil Ecology, 2012, 52, 56-64.	4.3	119
28	Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biology and Biochemistry, 2012, 46, 18-25.	8.8	26
29	Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biology and Biochemistry, 2010, 42, 2192-2202.	8.8	106
30	Ultrahigh-resolution mass spectrometry of simulated runoff from treated oil sands mature fine tailings. Rapid Communications in Mass Spectrometry, 2010, 24, 2400-2406.	1.5	26
31	Shifts in Root-Associated Microbial Communities ofTypha LatifoliaGrowing in Naphthenic Acids and Relationship to Plant Health. International Journal of Phytoremediation, 2010, 12, 745-760.	3.1	17
32	Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte <i>Phragmites australis</i> . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1008-1016.	1.7	17
33	No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Applied Soil Ecology, 2010, 46, 390-397.	4.3	208
34	The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza, 2009, 19, 239-246.	2.8	123
35	Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants. Environmental Toxicology and Chemistry, 2009, 28, 2167-2174.	4.3	34
36	Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Applied Soil Ecology, 2009, 42, 9-17.	4.3	83

#	Article	IF	CITATIONS
37	Soil microbial quality associated with yield reduction in continuous-pea. Applied Soil Ecology, 2009, 43, 115-121.	4.3	121
38	Fungal and Bacterial Abundance in Longâ€Term Noâ€Till and Intensiveâ€Till Soils of the Northern Great Plains. Soil Science Society of America Journal, 2009, 73, 120-127.	2.2	163
39	Phytoremediation of Organic Contaminants in Soil and Groundwater. ChemSusChem, 2008, 1, 708-717.	6.8	122
40	Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biology and Biochemistry, 2008, 40, 3054-3064.	8.8	137
41	Phytotoxicity of oil sands naphthenic acids and dissipation from systems planted with emergent aquatic macrophytes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 43, 36-42.	1.7	42
42	ARYL HYDROCARBON BIOACCESSIBILITY TO SMALL MAMMALS FROM ARCTIC PLANTS USING IN VITRO TECHNIQUES. Environmental Toxicology and Chemistry, 2007, 26, 491.	4.3	5
43	Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biology and Biochemistry, 2006, 38, 2823-2833.	8.8	108
44	A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biology and Biochemistry, 2005, 37, 1589-1597.	8.8	70
45	Plant-Assisted Degradation of Phenanthrene as Assessed by Solid-Phase Microextraction (SPME). International Journal of Phytoremediation, 2004, 6, 253-268.	3.1	13
46	Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Canadian Journal of Botany, 2004, 82, 22-30.	1.1	35
47	Hydrocarbon Tolerance Correlates with Seed Mass and Relative Growth Rate. Bioremediation Journal, 2004, 8, 185-199.	2.0	12
48	Field and soil microcosm studies on the survival and conjugation of aPseudomonas putidastrain bearing a recombinant plasmid, pADPTel. Canadian Journal of Microbiology, 2004, 50, 595-604.	1.7	15
49	Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biology and Fertility of Soils, 2003, 37, 261-267.	4.3	97
50	Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biology and Biochemistry, 2003, 35, 471-478.	8.8	166
51	Ability of Cold-Tolerant Plants to Grow in Hydrocarbon-Contaminated Soil. International Journal of Phytoremediation, 2003, 5, 105-123.	3.1	30
52	Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, 2003, 69, 483-489.	3.1	276
53	Seasonal Changes in the Rhizosphere MicrobialCommunities Associated with Field-Grown Genetically ModifiedCanola (Brassicanapus). Applied and Environmental Microbiology, 2003, 69, 7310-7318.	3.1	210
54	Are Methylmercury Concentrations in the Wetlands of Kejimkujik National Park, Nova Scotia, Canada, Dependent on Geology?. Journal of Environmental Quality, 2003, 32, 2085-2094.	2.0	21

#	Article	IF	CITATIONS
55	Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biology and Biochemistry, 2002, 34, 181-188.	8.8	78
56	Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiology Ecology, 2002, 42, 399-407.	2.7	85
57	Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiology Ecology, 2002, 42, 399-407.	2.7	3
58	Intact soil-core microcosms compared with multi-site field releases for pre-release testing of microbes in diverse soils and climates. Canadian Journal of Microbiology, 2001, 47, 237-252.	1.7	20
59	Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biology and Fertility of Soils, 2001, 33, 410-415.	4.3	193
60	Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiology Ecology, 2001, 38, 1-9.	2.7	111
61	Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiology Ecology, 2001, 38, 1-9.	2.7	49
62	The fungicides thiram and captan affect the phenotypic characteristics of Rhizobium leguminosarum strain C1 as determined by FAME and Biolog analyses. Biology and Fertility of Soils, 2000, 31, 303-309.	4.3	28
63	Potential of spore protein profiles as identification tools for arbuscular mycorrhizal fungi. Mycologia, 2000, 92, 1210-1213.	1.9	4
64	Potential of Spore Protein Profiles as Identification Tools for Arbuscular Mycorrhizal Fungi. Mycologia, 2000, 92, 1210.	1.9	4
65	Identification of Rhizobium leguminosarum and Rhizobium sp. (Cicer) strains using a custom Fatty Acid Methyl Ester (FAME) profile library. Journal of Applied Microbiology, 1999, 86, 78-86.	3.1	19
66	Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biology and Biochemistry, 1999, 31, 299-305.	8.8	49
67	Phenotypic plasticity of Pseudomonas aureofaciens (lacZY) introduced into and recovered from field and laboratory microcosm soils. FEMS Microbiology Ecology, 1998, 27, 133-139.	2.7	11
68	Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiology Ecology, 1998, 26, 43-50.	2.7	266
69	Degradation of chlorinated benzoic acid mixtures by plant–bacteria associations. Environmental Toxicology and Chemistry, 1998, 17, 728-733.	4.3	23
70	Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biology and Biochemistry, 1998, 30, 1717-1723.	8.8	59
71	Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environmental Reviews, 1998, 6, 65-79.	4.5	159
72	Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Canadian Journal of Microbiology, 1998, 44, 844-851.	1.7	149

JAMES J GERMIDA

10

#	Article	IF	CITATIONS
73	Response of spring wheat cultivars to <i>Glomus clarum</i> NT4 in a P-deficient soil containing arbuscular mycorrhizal fungi. Canadian Journal of Soil Science, 1998, 78, 481-484.	1.2	24
74	Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiology Ecology, 1998, 26, 43-50.	2.7	11
75	DEGRADATION OF CHLORINATED BENZOIC ACID MIXTURES BY PLANT–BACTERIA ASSOCIATIONS. Environmental Toxicology and Chemistry, 1998, 17, 728.	4.3	20
76	Growth response of lentil and wheat to Glomus clarum NT4 over a range of P levels in a Saskatchewan soil containing indigenous AM fungi. Mycorrhiza, 1997, 7, 3-8.	2.8	24
77	Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 1997, 24, 358-364.	4.3	460
78	Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biology and Fertility of Soils, 1997, 24, 365-371.	4.3	54
79	Evaluation of prairie grass species as bioindicators of halogenated aromatics in soil. Environmental Toxicology and Chemistry, 1997, 16, 521-527.	4.3	16
80	Bacterial inoculants of forage grasses that enhance degradation of 2 hlorobenzoic acid in soil. Environmental Toxicology and Chemistry, 1997, 16, 1098-1104.	4.3	66
81	EVALUATION OF PRAIRIE GRASS SPECIES AS BIOINDICATORS OF HALOGENATED AROMATICS IN SOIL. Environmental Toxicology and Chemistry, 1997, 16, 521.	4.3	1
82	BACTERIAL INOCULANTS OF FORAGE GRASSES THAT ENHANCE DEGRADATION OF 2-CHLOROBENZOIC ACID IN SOIL. Environmental Toxicology and Chemistry, 1997, 16, 1098.	4.3	3
83	Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biology and Fertility of Soils, 1996, 23, 113-120.	4.3	88
84	Estimating the Viability of Vesicular-Arbuscular Mycorrhizae Fungal Spores Using Tetrazolium Salts as Vital Stains. Mycologia, 1995, 87, 273.	1.9	23
85	Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza, 1995, 6, 43-49.	2.8	55
86	Estimating the viability of vesicular-arbuscular mycorrhizae fungal spores using tetrazolium salts as vital stains. Mycologia, 1995, 87, 273-279.	1.9	35
87	Effects of cultivation on the activity and kinetics of arylsulfatase in Saskatchewan soils. Soil Biology and Biochemistry, 1994, 26, 1033-1040.	8.8	34
88	Influence of Pseudomonas syringae R25 and P. putida R105 on the growth and N2 fixation (acetylene) Tj ETQq0 C Fertility of Soils, 1993, 16, 215-220.	0 rgBT /C 4.3	overlock 10 31
89	Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Research, 1993, 35, 101-114.	0.5	153

Propagation and storage of vesicular–arbuscular mycorrhizal fungi isolated from Saskatchewan agricultural soils. Canadian Journal of Botany, 1993, 71, 1328-1335.

#	Article	IF	CITATIONS
91	Occurrence and isolation of vesicular–arbuscular mycorrhizae in cropped field soils of Saskatchewan, Canada. Canadian Journal of Microbiology, 1993, 39, 567-575.	1.7	51
92	Manual and Digital Lineâ€Intercept Methods of Measuring Root Length: A Comparison. Agronomy Journal, 1993, 85, 1233-1237.	1.8	19
93	Influence of metribuzin on the <i>Rhizobium leguminosarum</i> –lentil (<i>Lens culinaris</i>) symbiosis. Canadian Journal of Microbiology, 1992, 38, 343-349.	1.7	19
94	Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biology and Biochemistry, 1992, 24, 1137-1146.	8.8	94
95	Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Canadian Journal of Microbiology, 1991, 37, 521-529.	1.7	50
96	Enumeration of sulfur-oxidizing populations in Saskatchewan agricultural soils. Canadian Journal of Soil Science, 1991, 71, 127-136.	1.2	30
97	A root tissue culture system to study winter wheat-rhizobacteria interactions. Applied Microbiology and Biotechnology, 1990, 33, 589-595.	3.6	25
98	Plant growth promoting rhizobacteria for winter wheat. Canadian Journal of Microbiology, 1990, 36, 265-272.	1.7	96
99	Influence of crop rhizospheres on populations and activity of heterotrophic sulfur-oxidizing microorganisms. Soil Biology and Biochemistry, 1990, 22, 457-463.	8.8	33
100	Influence of bacterial-amoebal interactions on sulfur transformations in soil. Soil Biology and Biochemistry, 1989, 21, 921-930.	8.8	29
101	Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biology and Biochemistry, 1988, 20, 777-786.	8.8	540
102	Populations of predatory protozoa in field soils after 5 years of elemental s fertilizer application. Soil Biology and Biochemistry, 1988, 20, 787-791.	8.8	24
103	Relationship Between Microbial Biomass and Elemental Sulfur Oxidation in Agricultural Soils. Soil Science Society of America Journal, 1988, 52, 672-677.	2.2	69
104	Transduction of Escherichia coli in soil. Canadian Journal of Microbiology, 1988, 34, 190-193.	1.7	42
105	IMPACT OF ELEMENTAL SULFUR FERTILIZATION ON AGRICULTURAL SOILS. I. EFFECTS ON MICROBIAL BIOMASS AND ENZYME ACTIVITIES. Canadian Journal of Soil Science, 1988, 68, 463-473.	1.2	55
106	IMPACT OF ELEMENTAL SULFUR FERTILIZATION ON AGRICULTURAL SOILS. II. EFFECTS ON SULFUR-OXIDIZING POPULATIONS AND OXIDATION RATES. Canadian Journal of Soil Science, 1988, 68, 475-483.	1.2	20
107	Growth of Indigenous <i>Rhizobium leguminosarum</i> and <i>Rhizobium meliloti</i> in Soils Amended with Organic Nutrients. Applied and Environmental Microbiology, 1988, 54, 257-263.	3.1	13
108	Population dynamics ofAzospirillum brasilense and its bacteriophage in soil. Plant and Soil, 1986, 90, 117-128.	3.7	21

#	Article	IF	CITATIONS
109	Evaluation of difference imagery for visualizing and quantitating microbial growth. Canadian Journal of Microbiology, 1985, 31, 35-44.	1.7	38
110	Microbial populations in trifluralin-treated soil. Plant and Soil, 1984, 76, 379-387.	3.7	21
111	Spontaneous induction of bacteriophage during growth of <i>Azospirillum brasilense</i> in complex media. Canadian Journal of Microbiology, 1984, 30, 805-808.	1.7	13
112	<i>Ensifer adhaerens</i> Predatory Activity Against Other Bacteria in Soil, as Monitored by Indirect Phage Analysis. Applied and Environmental Microbiology, 1983, 45, 1380-1388.	3.1	59
113	Isolation of <i>Arthrobacter</i> Bacteriophage from Soil. Applied and Environmental Microbiology, 1981, 41, 1389-1393.	3.1	12
114	Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Canadian Journal of Plant Science, 0, , .	0.9	18