John M Matsoukas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human Myelin Proteome and Sub-Metalloproteome Interaction Map: Relevance to Myelin-Related Neurological Diseases. Brain Sciences, 2022, 12, 434.	2.3	2
2	Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Computational and Structural Biotechnology Journal, 2022, 20, 2091-2111.	4.1	18
3	Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses, 2022, 14, 1029.	3.3	17
4	New Advances in Short Peptides: Looking Forward. Molecules, 2022, 27, 3635.	3.8	9
5	Receptor Interactions of Angiotensin II and Angiotensin Receptor Blockers—Relevance to COVID-19. Biomolecules, 2021, 11, 979.	4.0	15
6	Novel Approaches in the Immunotherapy of Multiple Sclerosis: Cyclization of Myelin Epitope Peptides and Conjugation with Mannan. Brain Sciences, 2021, 11, 1583.	2.3	5
7	Myelin Peptide–Mannan Conjugate Multiple Sclerosis Vaccines: Conjugation Efficacy and Stability of Vaccine Ingredient. Vaccines, 2021, 9, 1456.	4.4	6
8	The Use of Electrochemical Voltammetric Techniques and High-Pressure Liquid Chromatography to Evaluate Conjugation Efficiency of Multiple Sclerosis Peptide-Carrier Conjugates. Brain Sciences, 2020, 10, 577.	2.3	6
9	Mannan-MOG35-55 Reverses Experimental Autoimmune Encephalomyelitis, Inducing a Peripheral Type 2 Myeloid Response, Reducing CNS Inflammation, and Preserving Axons in Spinal Cord Lesions. Frontiers in Immunology, 2020, 11, 575451.	4.8	15
10	Advances in Multiple Sclerosis Research–Series I. Brain Sciences, 2020, 10, 795.	2.3	5
11	The Long Road of Immunotherapeutics against Multiple Sclerosis. Brain Sciences, 2020, 10, 288.	2.3	7
12	Cyclization of PLP139-151 peptide reduces its encephalitogenic potential in experimental autoimmune encephalomyelitis. Bioorganic and Medicinal Chemistry, 2018, 26, 2221-2228.	3.0	7
13	Design of Linear and Cyclic Mutant Analogues of Dirucotide Peptide (MBP82–98) against Multiple Sclerosis: Conformational and Binding Studies to MHC Class II. Brain Sciences, 2018, 8, 213.	2.3	4
14	Transdermal Delivery of AT1 Receptor Antagonists Reduce Blood Pressure and Reveal a Vasodilatory Effect on Kidney Blood Vessels. Current Molecular Pharmacology, 2018, 11, 226-236.	1.5	3
15	Cyclic MOG 35 – 55 ameliorates clinical and neuropathological features of experimental autoimmune encephalomyelitis. Bioorganic and Medicinal Chemistry, 2017, 25, 4163-4174.	3.0	11
16	Cyclic citrullinated MBP87–99 peptide stimulates T cell responses: Implications in triggering disease. Bioorganic and Medicinal Chemistry, 2017, 25, 528-538.	3.0	16
17	Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sciences, 2017, 7, 78.	2.3	197
18	Regulatory Cell Populations in Relapsing-Remitting Multiple Sclerosis (RRMS) Patients: Effect of Disease Activity and Treatment Regimens. International Journal of Molecular Sciences, 2016, 17, 1398.	4.1	26

ЈОНN Μ ΜΑΤSOUKAS

#	Article	IF	CITATIONS
19	Immunoexpression patterns for Hypoxia-inducible Factor-1α and von Hippel-Lindau protein, in relation to Hsp90, of human brain tumors. Histology and Histopathology, 2016, 31, 535-46.	0.7	0
20	Mannosylated Linear and Cyclic Single Amino Acid Mutant Peptides Using a Small 10 Amino Acid Linker Constitute Promising Candidates Against Multiple Sclerosis. Frontiers in Immunology, 2015, 6, 136.	4.8	13
21	Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis. European Journal of Medicinal Chemistry, 2015, 101, 13-23.	5.5	17
22	Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis. Experimental Neurology, 2015, 267, 254-267.	4.1	36
23	Rational Design and Synthesis of Altered Peptide Ligands based on Human Myelin Oligodendrocyte Glycoprotein 35–55 Epitope: Inhibition of Chronic Experimental Autoimmune Encephalomyelitis in Mice. Molecules, 2014, 19, 17968-17984.	3.8	16
24	Rational design, efficient syntheses and biological evaluation of N , N ′-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. European Journal of Medicinal Chemistry, 2013, 62, 352-370.	5.5	28
25	Microwave-assisted solid-phase peptide synthesis of the 60–110 domain of human pleiotrophin on 2-chlorotrityl resin. Amino Acids, 2011, 40, 1431-1440.	2.7	29
26	Design and Synthesis of a Cyclic Double Mutant Peptide (cyclo(87â^'99)[A ⁹¹ ,A ⁹⁶]MBP _{87â^'99}) Induces Altered Responses in Mice after Conjugation to Mannan: Implications in the Immunotherapy of Multiple Sclerosis. Journal of Medicinal Chemistry, 2009, 52, 214-218.	6.4	40
27	Towards immunotherapeutic drugs and vaccines against multiple sclerosis. Acta Biochimica Et Biophysica Sinica, 2008, 40, 636-642.	2.0	30
28	A double mutation of MBP83–99 peptide induces IL-4 responses and antagonizes IFN-γ responses. Journal of Neuroimmunology, 2008, 200, 77-89.	2.3	34
29	Design of Novel Cyclic Altered Peptide Ligands of Myelin Basic Protein MBP _{83â^'99} That Modulate Immune Responses in SJL/J Mice. Journal of Medicinal Chemistry, 2008, 51, 3971-3978.	6.4	50
30	Mannosylation of mutated MBP83–99 peptides diverts immune responses from Th1 to Th2. Molecular Immunology, 2008, 45, 3661-3670.	2.2	32
31	Citrullination of Linear and Cyclic Altered Peptide Ligands from Myelin Basic Protein (MBP _{87â^99}) Epitope Elicits a Th1 Polarized Response by T Cells Isolated from Multiple Sclerosis Patients: Implications in Triggering Disease. Journal of Medicinal Chemistry, 2008, 51, 7834-7842.	6.4	47
32	Round and Round we Go: Cyclic Peptides in Disease. Current Medicinal Chemistry, 2006, 13, 2221-2232.	2.4	154
33	Structure and Function of the Myelin Proteins: Current Status and Perspectives in Relation to Multiple Sclerosis. Current Medicinal Chemistry, 2005, 12, 1569-1587.	2.4	37
34	Design And Synthesis of a Novel Potent Myelin Basic Protein Epitope 87â^'99 Cyclic Analogue:Â Enhanced Stability and Biological Properties of Mimics Render Them a Potentially New Class of Immunomodulatorsâ€. Journal of Medicinal Chemistry, 2005, 48, 1470-1480.	6.4	62
35	Modulation of Angiogenesis and Progelatinase a by Thrombin Receptor Mimetics and Antagonists. Endothelium: Journal of Endothelial Cell Research, 2001, 8, 195-206.	1.7	28
36	Modulation of Angiogenesis and Progelatinase a by Thrombin Receptor Mimetics and Antagonists. Endothelium: Journal of Endothelial Cell Research, 2001, 8, 195-206.	1.7	7

#	Article	IF	CITATIONS
37	Design and Synthesis of a Potent Cyclic Analogue of the Myelin Basic Protein Epitope MBP72-85: Importance of the Ala81 Carboxyl Group and of a Cyclic Conformation for Induction of Experimental Allergic Encephalomyelitis. Journal of Medicinal Chemistry, 1999, 42, 1170-1177.	6.4	48
38	Title is missing!. International Journal of Peptide Research and Therapeutics, 1998, 5, 305-315.	0.1	1
39	A comparative SAR study of thrombin receptor derived non peptide mimetics: Importance of phenyl/guanidino proximity for activity. Amino Acids, 1998, 15, 211-220.	2.7	5
40	Design and synthesis of potent tyr(OMe)5-gonadotropin-releasing hormone (GnRH) analogues with modifications at positions 6, 9 and 10. International Journal of Peptide Research and Therapeutics, 1998, 5, 305-315.	0.1	2
41	Design and synthesis of potent cyclic analogues and mimetics of myelin basic protein epitope MBP87-99 for suppression of experimental allergic encephalomyelitis (EAE). Expert Opinion on Therapeutic Targets, 1998, 2, 31-32.	1.0	Ο
42	Advances in antihypertensive therapy: Non-peptide angiotensin II receptor antagonists as potent therapeutic agents. International Journal of Peptide Research and Therapeutics, 1996, 3, 169-174.	0.1	1
43	Interactions of angiotensin II with membranes using a combination of differential scanning calorimetry and 31P NMR spectroscopy. International Journal of Peptide Research and Therapeutics, 1996, 3, 175-180.	0.1	7
44	Influence of sarmesin on the cardiac and vascular actions of angiotensin II. International Journal of Peptide Research and Therapeutics, 1996, 3, 181-184.	0.1	0
45	Influence of sarmesin on some dopamine-related types of behaviour. International Journal of Peptide Research and Therapeutics, 1996, 3, 185-190.	0.1	4
46	Biological activity of the novel cyclic angiotensin II analogue [Sar1,Lys3,Glu5]ANG II. International Journal of Peptide Research and Therapeutics, 1996, 3, 191-194.	0.1	7
47	Superimposition of potent non-peptide AT1 receptor antagonists with angiotensin II. International Journal of Peptide Research and Therapeutics, 1996, 3, 209-216.	0.1	8
48	Inhibition of TRAP-induced angiogenesis by the tripeptide Phe-Pro-Arg, a thrombin-receptor-derived peptide analogue. International Journal of Peptide Research and Therapeutics, 1996, 3, 227-232.	0.1	1
49	Synthesis and activities of cyclic thrombin-receptor-derived peptide analogues of the Ser42-Phe-Leu-Leu-Arg46 motif sequence containing d-Phe and/or d-Arg. International Journal of Peptide Research and Therapeutics, 1996, 3, 233-240.	0.1	4
50	Design and synthesis of a gonadotropin-releasing hormone (GnRH) analogue, [Tyr(OMe)5,d-Glu6,Aze9]GnRH: Receptor binding, gonadotropin release and ovulation studies. International Journal of Peptide Research and Therapeutics, 1996, 3, 257-262.	0.1	7
51	Design and Pharmacology of Peptide Mimetics. Advances in Pharmacology, 1995, 33, 91-141.	2.0	29
52	Receptor interactions of the position 4 side chains of angiotensin II analogues: Importance of aromatic ring quadrupole. Journal of Molecular Recognition, 1994, 7, 251-256.	2.1	7
53	Synthesis and biological activities of angiotensin II, sarilesin, and sarmesin analogs containing Aze or Pip at position 7. Journal of Medicinal Chemistry, 1993, 36, 904-911.	6.4	33
54	Synthesis and biological activities of angiotensin II and Sarmesin analogues containing cyclohexylalanine. International Journal of Peptide and Protein Research, 1991, 37, 21-26.	0.1	3

JOHN M MATSOUKAS

#	Article	IF	CITATIONS
55	One pot synthesis and conformation of N-t-butyloxycarbonyl, O-Phenacyl derivatives of proline and other secondary amino acids. Tetrahedron, 1990, 46, 565-576.	1.9	35
56	Nmr and Mass Spectroscopic Studies of the Competitive-Angiotensin II Antagonist "Sarmesin― Spectroscopy Letters, 1988, 21, 477-491.	1.0	3
57	Angiotensin as a model for hormone – receptor interactions. Bioscience Reports, 1985, 5, 407-416.	2.4	34
58	13C NMR of Some Malic Acid Derivatives. Spectroscopy Letters, 1983, 16, 933-943.	1.0	2