Joan A Steitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2650647/publications.pdf

Version: 2024-02-01

109321 98798 7,739 71 35 67 h-index citations g-index papers 74 74 74 8183 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell, 2014, 157, 77-94.	28.9	2,001
2	Are snRNPs involved in splicing?. Nature, 1980, 283, 220-224.	27.8	1,264
3	A mammalian gene with introns instead of exons generating stable RNA products. Nature, 1996, 379, 464-466.	27.8	308
4	Alive with DEAD proteins. Nature, 1991, 349, 463-464.	27.8	262
5	Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19202-19207.	7.1	251
6	Trans splicing involves a novel form of small nuclear ribonucleoprotein particles. Nature, 1988, 335, 559-562.	27.8	216
7	Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nature Structural and Molecular Biology, 2014, 21, 633-640.	8.2	213
8	Methyltransferase-like protein 16 binds the $3\hat{a}\in^2$ -terminal triple helix of MALAT1 long noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14013-14018.	7.1	197
9	Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA. Cell, 2013, 155, 1568-1580.	28.9	189
10	Viral noncoding RNAs: more surprises. Genes and Development, 2015, 29, 567-584.	5.9	170
11	Structural Basis for Target-Directed MicroRNA Degradation. Molecular Cell, 2019, 75, 1243-1255.e7.	9.7	163
12	Widespread Inducible Transcription Downstream of Human Genes. Molecular Cell, 2015, 59, 449-461.	9.7	156
13	Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix. Science, 2010, 330, 1244-1247.	12.6	144
14	Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. Rna, 2001, 7, 1348-1361.	3.5	138
15	EBV Noncoding RNA Binds Nascent RNA to Drive Host PAX5 to Viral DNA. Cell, 2015, 160, 607-618.	28.9	124
16	A Viral Nuclear Noncoding RNA Binds Re-localized Poly(A) Binding Protein and Is Required for Late KSHV Gene Expression. PLoS Pathogens, 2011, 7, e1002300.	4.7	110
17	Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8362-E8371.	7.1	103
18	A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO Journal, 2005, 24, 1831-1841.	7.8	96

#	Article	IF	CITATIONS
19	Identification of a Rapid Mammalian Deadenylation-Dependent Decay Pathway and Its Inhibition by a Viral RNA Element. Molecular Cell, 2006, 24, 943-953.	9.7	95
20	Virus Meets Host MicroRNA: the Destroyer, the Booster, the Hijacker. Molecular and Cellular Biology, 2014, 34, 3780-3787.	2.3	88
21	Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature, 1974, 248, 204-208.	27.8	87
22	Conservation of a Triple-Helix-Forming RNA Stability Element in Noncoding and Genomic RNAs of Diverse Viruses. Cell Reports, 2012, 2, 26-32.	6.4	81
23	A new interaction between the mouse 5′ external transcribed spacer of pre-rRNA and U3 snRNA detected by psoralen crosslinking. Nucleic Acids Research, 1992, 20, 5375-5382.	14.5	65
24	Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Molecular Cell, 2021, 81, 502-513.e4.	9.7	61
25	EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3221-3226.	7.1	60
26	Nucleotide sequence of $\hat{l}^3\hat{l}'$ resolvase gene and demonstration that its gene product acts as a repressor of transcription. Nature, 1982, 300, 381-383.	27.8	58
27	An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4961-E4970.	7.1	57
28	Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function. Molecular Cell, 2014, 54, 67-79.	9.7	55
29	miRNPs: versatile regulators of gene expression in vertebrate cells. Biochemical Society Transactions, 2009, 37, 931-935.	3.4	54
30	Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10412-10417.	7.1	53
31	Versatile microRNA biogenesis in animals and their viruses. RNA Biology, 2014, 11, 673-681.	3.1	52
32	SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	52
33	The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes and Development, 2015, 29, 1552-1564.	5.9	44
34	A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting. Rna, 2016, 22, 175-183.	3.5	43
35	RNA families in Epstein–Barr virus. RNA Biology, 2014, 11, 10-17.	3.1	42
36	Readthrough transcription: How are DoGs made and what do they do?. RNA Biology, 2017, 14, 632-636.	3.1	37

#	Article	IF	CITATIONS
37	Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation. Molecular Cell, 2017, 65, 191-201.	9.7	34
38	Settling the m ⁶ A debate: methylation of mature mRNA is not dynamic but accelerates turnover. Genes and Development, 2017, 31, 957-958.	5.9	30
39	RNA processing: Lessons from mutant globins. Nature, 1983, 303, 380-381.	27.8	29
40	RNA stabilization by a poly(A) tail $3\hat{a}\in^2$ -end binding pocket and other modes of poly(A)-RNA interaction. Science, 2021, 371, .	12.6	29
41	Noncoding RNPs of Viral Origin. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005165-a005165.	5.5	28
42	Deciphering the mysteries of RNA-containing lupus antigens. Arthritis and Rheumatism, 1982, 25, 761-766.	6.7	26
43	A proximity-dependent assay for specific RNA–protein interactions in intact cells. Rna, 2016, 22, 1785-1792.	3.5	25
44	Specific recognition of the isolated R17 replicase initiator region by R17 coat protein. Nature, 1974, 248, 223-225.	27.8	24
45	Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi. Cell Reports, 2016, 15, 1266-1276.	6.4	24
46	Hoogsteen-position pyrimidines promote the stability and function of the MALAT1 RNA triple helix. Rna, 2016, 22, 743-749.	3.5	24
47	Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLoS ONE, 2015, 10, e0124638.	2.5	22
48	3′-Biotin-tagged microRNA-27 does not associate with Argonaute proteins in cells. Rna, 2014, 20, 985-988.	3.5	21
49	How Complementary Targets Expose the microRNA 3′ End for Tailing and Trimming during Target-Directed microRNA Degradation. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 179-183.	1.1	21
50	Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annual Review of Virology, 2019, 6, 297-317.	6.7	20
51	Host miRNA degradation by <i>Herpesvirus saimiri</i> small nuclear RNA requires an unstructured interacting region. Rna, 2016, 22, 1181-1189.	3.5	18
52	Who let the DoGs out? – biogenesis of stress-induced readthrough transcripts. Trends in Biochemical Sciences, 2022, 47, 206-217.	7.5	18
53	Commentary: Bio2010â€"New Challenges for Biology Educators. CBE: Life Sciences Education, 2003, 2, 87-91.	0.7	17
54	Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLoS Pathogens, 2018, 14, e1007389.	4.7	17

#	Article	IF	CITATIONS
55	Nuclear Translocation and Regulation of Intranuclear Distribution of Cytoplasmic Poly(A)-Binding Protein Are Distinct Processes Mediated by Two Epstein Barr Virus Proteins. PLoS ONE, 2014, 9, e92593.	2.5	16
56	STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Molecular Cell, 2021, 81, 4398-4412.e7.	9.7	16
57	Noncoding RNAâ€guided recruitment of transcription factors: A prevalent but undocumented mechanism?. BioEssays, 2015, 37, 936-941.	2.5	14
58	Herpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators. Journal of Virology, 2015, 89, 10901-10911.	3.4	14
59	Structural analyses of an RNA stability element interacting with poly(A). Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	13
60	RNA–RNA base-pairing: theme and variations. Rna, 2015, 21, 476-477.	3.5	11
61	Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA. Journal of Virology, 2018, 92, .	3.4	11
62	Calcium signaling and transcription: elongation, DoGs, and eRNAs. Receptors & Clinical Investigation, 2016, 3, .	0.9	8
63	In silico discovery and modeling of non-coding RNA structure in viruses. Methods, 2015, 91, 48-56.	3.8	5
64	Intronless \hat{I}^2 -Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements. Methods in Molecular Biology, 2016, 1428, 77-92.	0.9	4
65	tRNA-like leader-trailer interaction promotes 3′-end maturation of MALAT1. Rna, 2021, 27, 1140-1147.	3.5	4
66	Modulation of mRNA 3′-End Processing and Transcription Termination in Virus-Infected Cells. Frontiers in Immunology, 2022, 13, 828665.	4.8	4
67	Quantitative Fluorescence In Situ Hybridization (FISH) and Immunofluorescence (IF) of Specific Gene Products in KSHV-Infected Cells. Journal of Visualized Experiments, 2019, , .	0.3	3
68	Caution needs to be taken when assigning transcription start sites to ends of protein-coding genes: a rebuttal. Human Genomics, 2018, 12, 32.	2.9	0
69	RNA determinants and protein components of the histone preâ€mRNA processing machinery. FASEB Journal, 2006, 20, A930.	0.5	0
70	Noncoding RNAs: small, large and viral. FASEB Journal, 2015, 29, 21.1.	0.5	0
71	A general two-metal-ion mechanism for catalytic RNA. journal of hand surgery Asian-Pacific volume, The, 2020, , 597-601.	0.4	0