Zhongfan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
2	Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 3712-3718.	1.2	1,045
3	Can Graphene be used as a Substrate for Raman Enhancement?. Nano Letters, 2010, 10, 553-561.	4.5	914
4	Synthesis of Nitrogenâ€Doped Graphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials, 2011, 23, 1020-1024.	11.1	735
5	Toward Clean and Crackless Transfer of Graphene. ACS Nano, 2011, 5, 9144-9153.	7.3	701
6	Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44, 2584-2586.	18.7	699
7	Controlled Growth of High-Quality Monolayer WS ₂ Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013, 7, 8963-8971.	7.3	696
8	Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion. Advanced Materials, 2017, 29, 1702590.	11.1	675
9	Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. Nano Letters, 2014, 14, 6016-6022.	4.5	656
10	Photoelectrochemical information storage using an azobenzene derivative. Nature, 1990, 347, 658-660.	13.7	565
11	Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. Journal of Physical Chemistry C, 2008, 112, 17741-17744.	1.5	522
12	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	11.1	516
13	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
14	High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 2017, 12, 530-534.	15.6	507
15	Surface enhanced Raman spectroscopy on a flat graphene surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9281-9286.	3.3	505
16	Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction. Journal of the American Chemical Society, 2015, 137, 7596-7599.	6.6	484
17	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	15.6	465
18	Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 9890-9891.	6.6	460

#	Article	IF	CITATIONS
19	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	4.3	454
20	Robust Superhydrophobic Foam: A Graphdiyneâ€Based Hierarchical Architecture for Oil/Water Separation. Advanced Materials, 2016, 28, 168-173.	11.1	449
21	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	1.6	432
22	Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213.	4.5	410
23	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
24	Few-Layer Nanoplates of Bi ₂ Se ₃ and Bi ₂ Te ₃ with Highly Tunable Chemical Potential. Nano Letters, 2010, 10, 2245-2250.	4.5	403
25	Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique. Langmuir, 2000, 16, 3569-3573.	1.6	398
26	Controllable Synthesis of Conducting Polypyrrole Nanostructures. Journal of Physical Chemistry B, 2006, 110, 1158-1165.	1.2	390
27	Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524.	13.3	389
28	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
29	Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters, 2011, 11, 1106-1110.	4.5	365
30	Two-Dimensional (C ₄ H ₉ NH ₃) ₂ PbBr ₄ Perovskite Crystals for High-Performance Photodetector. Journal of the American Chemical Society, 2016, 138, 16612-16615.	6.6	341
31	Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018, 9, 979.	5.8	338
32	Photochemical Chlorination of Graphene. ACS Nano, 2011, 5, 5957-5961.	7.3	337
33	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	6.6	335
34	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	18.7	334
35	The rare two-dimensional materials with Dirac cones. National Science Review, 2015, 2, 22-39.	4.6	332
36	Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nature Chemistry, 2012, 4, 281-286.	6.6	309

#	Article	IF	CITATIONS
37	Versatile Nâ€Doped MXene Ink for Printed Electrochemical Energy Storage Application. Advanced Energy Materials, 2019, 9, 1901839.	10.2	301
38	Rationalizing Electrocatalysis of Li–S Chemistry by Mediator Design: Progress and Prospects. Advanced Energy Materials, 2020, 10, 1901075.	10.2	296
39	Epitaxy and Photoresponse of Two-Dimensional GaSe Crystals on Flexible Transparent Mica Sheets. ACS Nano, 2014, 8, 1485-1490.	7.3	285
40	Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing. Journal of the American Chemical Society, 2008, 130, 12612-12613.	6.6	283
41	Measurement of the Rate of Water Translocation through Carbon Nanotubes. Nano Letters, 2011, 11, 2173-2177.	4.5	282
42	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 2020, 32, e2003425.	11.1	278
43	Rollâ€ŧoâ€Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 5210-5216.	11.1	273
44	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	2.2	269
45	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
46	Cicada Wings: A Stamp from Nature for Nanoimprint Lithography. Small, 2006, 2, 1440-1443.	5.2	257
47	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	11.8	244
48	Toward Single-Layer Uniform Hexagonal Boron Nitride–Graphene Patchworks with Zigzag Linking Edges. Nano Letters, 2013, 13, 3439-3443.	4.5	242
49	Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Nano Letters, 2017, 17, 3681-3687.	4.5	241
50	Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters, 2011, 11, 297-303.	4.5	239
51	Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6, 283-286.	13.3	238
52	Chemistry Makes Graphene beyond Graphene. Journal of the American Chemical Society, 2014, 136, 12194-12200.	6.6	235
53	Janus graphene from asymmetric two-dimensional chemistry. Nature Communications, 2013, 4, 1443.	5.8	231
54	Metallic Vanadium Disulfide Nanosheets as a Platform Material for Multifunctional Electrode Applications. Nano Letters, 2017, 17, 4908-4916.	4.5	230

#	Article	IF	CITATIONS
55	Carbonâ€Nanomaterialâ€Based Flexible Batteries for Wearable Electronics. Advanced Materials, 2019, 31, e1800716.	11.1	228
56	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226
57	Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nature Communications, 2011, 2, 522.	5.8	223
58	Angle-Dependent van Hove Singularities in a Slightly Twisted Graphene Bilayer. Physical Review Letters, 2012, 109, 126801.	2.9	222
59	Boron Nitride Nanopores: Highly Sensitive DNA Singleâ€Molecule Detectors. Advanced Materials, 2013, 25, 4549-4554.	11.1	220
60	Toward Mass Production of CVD Graphene Films. Advanced Materials, 2019, 31, e1800996.	11.1	218
61	Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 2018, 9, 3311.	5.8	213
62	Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil–Water Separation. Journal of the American Chemical Society, 2016, 138, 6360-6363.	6.6	212
63	The origin of wrinkles on transferred graphene. Nano Research, 2011, 4, 996-1004.	5.8	211
64	Epitaxial Growth of Centimeter-Scale Single-Crystal MoS ₂ Monolayer on Au(111). ACS Nano, 2020, 14, 5036-5045.	7.3	211
65	Controlled synthesis of single-crystal SnSe nanoplates. Nano Research, 2015, 8, 288-295.	5.8	207
66	A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. Journal of Materials Chemistry, 2002, 12, 1179-1183.	6.7	206
67	Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5777-5781.	3.2	206
68	2D nanomaterials: graphene and transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 3015-3017.	18.7	204
69	Epitaxial Heterostructures of Ultrathin Topological Insulator Nanoplate and Graphene. Nano Letters, 2010, 10, 2870-2876.	4.5	203
70	Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Science Advances, 2018, 4, eaat6378.	4.7	198
71	Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy, 2020, 70, 104555.	8.2	194
72	Controlled Growth of Atomically Thin In ₂ Se ₃ Flakes by van der Waals Epitaxy. Journal of the American Chemical Society, 2013, 135, 13274-13277.	6.6	192

#	Article	IF	CITATIONS
73	"Cloning―of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism. Nano Letters, 2009, 9, 1673-1677.	4.5	191
74	Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 2015, 6, 6835.	5.8	191
75	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	5.8	191
76	Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 2015, 6, 6519.	5.8	190
77	Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. Advanced Materials, 2017, 29, 1605308.	11.1	189
78	Segregation Growth of Graphene on Cu–Ni Alloy for Precise Layer Control. Journal of Physical Chemistry C, 2011, 115, 11976-11982.	1.5	188
79	Temperatureâ€Mediated Selective Growth of MoS ₂ /WS ₂ and WS ₂ /MoS ₂ Vertical Stacks on Au Foils for Direct Photocatalytic Applications. Advanced Materials, 2016, 28, 10664-10672.	11.1	188
80	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a High‣ulfur‣oading Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800201.	10.2	188
81	Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano, 2011, 5, 4014-4022.	7.3	186
82	Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chemical Society Reviews, 2011, 40, 1296-1304.	18.7	185
83	Synthesis of Boronâ€Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition. Small, 2013, 9, 1316-1320.	5.2	181
84	Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 2019, 60, 247-256.	8.2	180
85	Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. Nano Letters, 2015, 15, 5846-5854.	4.5	176
86	Designed CVD Growth of Graphene via Process Engineering. Accounts of Chemical Research, 2013, 46, 2263-2274.	7.6	172
87	Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nature Communications, 2015, 6, 6972.	5.8	172
88	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	7.3	172
89	Enhanced Kinetics Harvested in Heteroatom Dualâ€Doped Graphitic Hollow Architectures toward High Rate Printable Potassiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2001161.	10.2	172
90	Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Research, 2015, 8, 3164-3176.	5.8	171

#	Article	IF	CITATIONS
91	Designing 3D Biomorphic Nitrogenâ€Doped MoSe ₂ /Graphene Composites toward Highâ€Performance Potassiumâ€Ion Capacitors. Advanced Functional Materials, 2020, 30, 1903878.	7.8	171
92	Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3, 545-556.	5.8	170
93	Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology, 2004, 15, 357-364.	1.3	169
94	Controlled Synthesis of Topological Insulator Nanoplate Arrays on Mica. Journal of the American Chemical Society, 2012, 134, 6132-6135.	6.6	169
95	Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon. Langmuir, 2000, 16, 4409-4412.	1.6	168
96	Photocatalytic Patterning and Modification of Graphene. Journal of the American Chemical Society, 2011, 133, 2706-2713.	6.6	168
97	Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nature Communications, 2013, 4, 2159.	5.8	165
98	Low-temperature growth and properties of ZnO nanowires. Applied Physics Letters, 2004, 84, 4941-4943.	1.5	163
99	Printable magnesiumÂion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nature Communications, 2019, 10, 4913.	5.8	162
100	Labeling the Defects of Single-Walled Carbon Nanotubes Using Titanium Dioxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 2453-2458.	1.2	160
101	Conductance Switching and Mechanisms in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2013, 52, 8666-8670.	7.2	158
102	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano, 2014, 8, 8617-8624.	7.3	158
103	Fabrication of Designed Architectures of Au Nanoparticles on Solid Substrate with Printed Self-Assembled Monolayers as Templates. Langmuir, 2000, 16, 3846-3851.	1.6	157
104	Building Highâ€Throughput Molecular Junctions Using Indented Graphene Point Contacts. Angewandte Chemie - International Edition, 2012, 51, 12228-12232.	7.2	157
105	Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. Small, 2010, 6, 1100-1107.	5.2	156
106	Caging Nb ₂ O ₅ Nanowires in PECVDâ€Derived Graphene Capsules toward Bendable Sodiumâ€ion Hybrid Supercapacitors. Advanced Materials, 2018, 30, e1800963.	11.1	155
107	Bandgap Opening in Graphene Antidot Lattices: The Missing Half. ACS Nano, 2011, 5, 4023-4030.	7.3	154
108	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153

#	Article	IF	CITATIONS
109	Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructuresElectronic supplementary information (ESI) available: FT-IR spectra, powder XRD pattern and conductivities of as-made PPy nanostructures. See http://www.rsc.org/suppdata/cc/b4/b405255b/. Chemical Communications, 2004, , 1852.	2.2	150
110	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	5.5	150
111	A Highly Stretchable Crossâ€Linked Polyacrylamide Hydrogel as an Effective Binder for Silicon and Sulfur Electrodes toward Durable Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705015.	7.8	148
112	Thionine-mediated chemistry of carbon nanotubes. Carbon, 2004, 42, 287-291.	5.4	147
113	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li–S Batteries. ACS Nano, 2018, 12, 10240-10250.	7.3	146
114	Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array. Journal of the American Chemical Society, 2009, 131, 14642-14643.	6.6	143
115	Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials, 2021, 11, 2100332.	10.2	143
116	Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters, 2004, 85, 1796-1798.	1.5	142
117	Wrinkle Engineering: A New Approach to Massive Graphene Nanoribbon Arrays. Journal of the American Chemical Society, 2011, 133, 17578-17581.	6.6	142
118	Defective VSe ₂ –Graphene Heterostructures Enabling <i>In Situ</i> Electrocatalyst Evolution for Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 11929-11938.	7.3	142
119	Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chemical Society Reviews, 2018, 47, 3018-3036.	18.7	140
120	3D Printing of a V ₈ C ₇ –VO ₂ Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries. Advanced Materials, 2020, 32, e2005967.	11.1	140
121	Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon, 2004, 42, 829-835.	5.4	139
122	Ribbon- and Boardlike Nanostructures of Nickel Hydroxide:Â Synthesis, Characterization, and Electrochemical Properties. Journal of Physical Chemistry B, 2005, 109, 7654-7658.	1.2	139
123	Surfaceâ€Confined Singleâ€Layer Covalent Organic Framework on Singleâ€Layer Graphene Grown on Copper Foil. Angewandte Chemie - International Edition, 2014, 53, 9564-9568.	7.2	139
124	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	4.5	136
125	Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nature Communications, 2016, 7, 10699.	5.8	136
126	Hexagonal Boron Nitride–Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 2016, 12, 32-50.	5.2	136

#	Article	IF	CITATIONS
127	Diatomiteâ€Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application. Advanced Materials, 2018, 30, e1800548.	11.1	134
128	Direct Growth of High-Quality Graphene on High-κ Dielectric SrTiO ₃ Substrates. Journal of the American Chemical Society, 2014, 136, 6574-6577.	6.6	133
129	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	5.8	133
130	All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS ₂ /Graphene Heterostructures. Advanced Materials, 2015, 27, 7086-7092.	11.1	132
131	Surfactant-Directed Polypyrrole/CNT Nanocables: Synthesis, Characterization, and Enhanced Electrical Properties. ChemPhysChem, 2004, 5, 998-1002.	1.0	130
132	Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Physical Chemistry Chemical Physics, 2002, 4, 6059-6062.	1.3	129
133	Surface Monocrystallization of Copper Foil for Fast Growth of Large Singleâ€Crystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
134	Monitoring Local Strain Vector in Atomic-Layered MoSe ₂ by Second-Harmonic Generation. Nano Letters, 2017, 17, 7539-7543.	4.5	128
135	Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nature Photonics, 2019, 13, 754-759.	15.6	127
136	Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 2004, 42, 1455-1461.	5.4	126
137	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5687-5694.	4.0	126
138	CMP Aerogels: Ultrahighâ€Surfaceâ€Area Carbonâ€Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 2014, 26, 8053-8058.	11.1	125
139	2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018, 61, 765-786.	4.2	123
140	Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C ₃ N ₄ Composite for Hydrocarbon Oxidation. ACS Nano, 2016, 10, 3665-3673.	7.3	122
141	Manipulating Electrocatalytic Li ₂ S Redox via Selective Dualâ€Defect Engineering for Li–S Batteries. Advanced Materials, 2021, 33, e2103050.	11.1	122
142	Chemical Alignment of Oxidatively Shortened Single-Walled Carbon Nanotubes on Silver Surface. Journal of Physical Chemistry B, 2001, 105, 5075-5078.	1.2	120
143	Aligned, Ultralong Singleâ€Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic Devices. Advanced Materials, 2010, 22, 2285-2310.	11.1	120
144	Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6, 6099.	5.8	120

#	Article	IF	CITATIONS
145	Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon, 2005, 43, 1470-1478.	5.4	119
146	Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111). Nano Letters, 2015, 15, 5804-5810.	4.5	117
147	Inverse relationship between carrier mobility and bandgap in graphene. Journal of Chemical Physics, 2013, 138, 084701.	1.2	116
148	Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary. Nano Letters, 2014, 14, 6342-6347.	4.5	116
149	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
150	Raman Spectra and Corresponding Strain Effects in Graphyne and Graphdiyne. Journal of Physical Chemistry C, 2016, 120, 10605-10613.	1.5	116
151	Improved Epitaxy of AlN Film for Deepâ€Ultraviolet Lightâ€Emitting Diodes Enabled by Graphene. Advanced Materials, 2019, 31, e1807345.	11.1	116
152	Highâ€Performance Photoresponsive Organic Nanotransistors with Singleâ€Layer Graphenes as Twoâ€Dimensional Electrodes. Advanced Functional Materials, 2009, 19, 2743-2748.	7.8	115
153	Cap Formation Engineering: From Opened C ₆₀ to Single-Walled Carbon Nanotubes. Nano Letters, 2010, 10, 3343-3349.	4.5	115
154	Architecture of βâ€Graphdiyneâ€Containing Thin Film Using Modified Glaser–Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO ₂ . Advanced Materials, 2017, 29, 1700421.	11.1	115
155	Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil. Advanced Materials, 2017, 29, 1604665.	11.1	114
156	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	2.1	114
157	Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. Advanced Materials, 2019, 31, e1803639.	11.1	114
158	Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Advanced Materials, 2018, 30, 1702944.	11.1	113
159	Identifying the Evolution of Seleniumâ€Vacancyâ€Modulated MoSe ₂ Precatalyst in Lithium–Sulfur Chemistry. Angewandte Chemie - International Edition, 2021, 60, 24558-24565.	7.2	113
160	Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8, 3496-3504.	5.8	112
161	CVD Growth of Large Area Smooth-edged Graphene Nanomesh by Nanosphere Lithography. Scientific Reports, 2013, 3, 1238.	1.6	111
162	Creating One-Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer. Physical Review Letters, 2014, 113, 086102.	2.9	111

#	Article	IF	CITATIONS
163	High-Performance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes. ACS Applied Materials & Interfaces, 2010, 2, 3406-3410.	4.0	108
164	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	7.3	108
165	Recent progress in the tailored growth of two-dimensional hexagonal boron nitride <i>via</i> chemical vapour deposition. Chemical Society Reviews, 2018, 47, 4242-4257.	18.7	107
166	Conductive and Catalytic VTe ₂ @MgO Heterostructure as Effective Polysulfide Promotor for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 13235-13243.	7.3	107
167	MOF-derived conductive carbon nitrides for separator-modified Li–S batteries and flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 1757-1766.	5.2	107
168	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy, 2018, 53, 432-439.	8.2	105
169	MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3027-3034.	5.2	105
170	Substrate-Induced Raman Frequency Variation for Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 17156-17157.	6.6	103
171	Synthesis of Ultrathin Graphdiyne Film Using a Surface Template. ACS Applied Materials & Interfaces, 2019, 11, 2632-2637.	4.0	103
172	pH-Dependent Adsorption of Gold Nanoparticles onp-Aminothiophenol-Modified Gold Substrates. Langmuir, 1999, 15, 5197-5199.	1.6	101
173	Chemically Assembled Single-Wall Carbon Nanotubes and their Electrochemistry. ChemPhysChem, 2002, 3, 898-991.	1.0	100
174	SERS Titration of 4-Mercaptopyridine Self-Assembled Monolayers at Aqueous Buffer/Gold Interfaces. Analytical Chemistry, 1999, 71, 1354-1358.	3.2	99
175	Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithiumâ^'sulfur batteries. Journal of Energy Chemistry, 2020, 42, 34-42.	7.1	99
176	Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Communications, 2012, 3, 1280.	5.8	97
177	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	7.3	97
178	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. ACS Nano, 2019, 13, 5541-5548.	7.3	96
179	Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation. Journal of Physical Chemistry C, 2008, 112, 3849-3856.	1.5	95
180	Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nature Communications, 2018, 9, 2334.	5.8	95

#	Article	IF	CITATIONS
181	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	7.8	95
182	Controlled Growth of Single rystal Graphene Films. Advanced Materials, 2020, 32, e1903266.	11.1	95
183	Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding. Journal of Physical Chemistry C, 2012, 116, 844-850.	1.5	94
184	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	5.8	94
185	Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nature Nanotechnology, 2020, 15, 987-991.	15.6	94
186	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93
187	Lowâ€Temperature Heteroepitaxy of 2D PbI ₂ /Graphene for Largeâ€Area Flexible Photodetectors. Advanced Materials, 2018, 30, e1803194.	11.1	93
188	In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy, 2019, 60, 385-393.	8.2	93
189	Immobilizing Shortened Single-Walled Carbon Nanotubes (SWNTs) on Gold Using a Surface Condensation Method. Journal of Colloid and Interface Science, 2002, 245, 311-318.	5.0	92
190	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15733-15741.	4.0	92
191	Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Research, 2018, 11, 4614-4626.	5.8	92
192	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391.	5.8	92
193	High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Research, 2011, 4, 434-439.	5.8	91
194	Toward Functional Molecular Devices Based on Graphene–Molecule Junctions. Angewandte Chemie - International Edition, 2013, 52, 3906-3910.	7.2	91
195	Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, 2015, 8, 2881-2890.	5.8	91
196	Surface-Enhanced Raman Scattering (SERS) from Azobenzene Self-Assembled "Sandwiches― Langmuir, 1999, 15, 16-19.	1.6	90
197	Fast Growth and Broad Applications of 25â€Inch Uniform Graphene Glass. Advanced Materials, 2017, 29, 1603428	11.1	90
198	3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Letters, 2020, 12, 143.	14.4	90

#	Article	IF	CITATIONS
199	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	7.3	89
200	The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology, 2008, 19, 095605.	1.3	87
201	Interlayer vibrational modes in few-quintuple-layer < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:msub> < mml:mi>Bi < mml:m xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:msub> < mml:mi>Bi < mml:m crystals: Raman spectroscopy and Physical Review B_2014_90	וח>2וח>2 <td>ıl:mŋ>ıl:mh></td>	ıl:mŋ>ıl:mh>
202	Controllable Coâ€segregation Synthesis of Waferâ€Scale Hexagonal Boron Nitride Thin Films. Advanced Materials, 2014, 26, 1776-1781.	11.1	87
203	Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS ₂ / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.	7.3	87
204	Highâ€Brightness Blue Lightâ€Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer. Advanced Materials, 2018, 30, e1801608.	11.1	87
205	Graphene-Like ZnO: A Mini Review. Crystals, 2016, 6, 100.	1.0	86
206	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	11.1	86
207	Synthesis of Nickel Hydroxide Nanoribbons with a New Phase:Â A Solution Chemistry Approach. Journal of Physical Chemistry B, 2004, 108, 7531-7533.	1.2	85
208	Grapheneâ€Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithiumâ€Ion Battery. Advanced Materials, 2017, 29, 1703882.	11.1	85
209	Solar thermal-driven capacitance enhancement of supercapacitors. Energy and Environmental Science, 2018, 11, 2016-2024.	15.6	85
210	One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology, 2007, 18, 325607.	1.3	84
211	Vertically Aligned Singleâ€Walled Carbon Nanotubes by Chemical Assembly – Methodology, Properties, and Applications. Advanced Materials, 2010, 22, 1430-1449.	11.1	84
212	Growth and Atomic-Scale Characterizations of Graphene on Multifaceted Textured Pt Foils Prepared by Chemical Vapor Deposition. ACS Nano, 2011, 5, 9194-9201.	7.3	84
213	Carbide-Forming Groups IVB-VIB Metals: A New Territory in the Periodic Table for CVD Growth of Graphene. Nano Letters, 2014, 14, 3832-3839.	4.5	84
214	Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2005, 80, 1813-1817.	1.1	83
215	BN-Embedded Graphene with a Ubiquitous Gap Opening. Journal of Physical Chemistry C, 2012, 116, 21098-21103.	1.5	83
216	Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage. ACS Nano, 2019, 13, 7517-7526.	7.3	83

#	Article	IF	CITATIONS
217	Surface-Enhanced Raman Scattering ofp-Aminothiophenol on a Au(core)/Cu(shell) Nanoparticle Assembly. ChemPhysChem, 2005, 6, 913-918.	1.0	82
218	Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. Nano Letters, 2016, 16, 7731-7738.	4.5	82
219	Universal <i>in Situ</i> Crafted MO <i>_{<i>x</i>}</i> -MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li–S Batteries. ACS Nano, 2020, 14, 16073-16084.	7.3	82
220	Identifying sp–sp ² carbon materials by Raman and infrared spectroscopies. Physical Chemistry Chemical Physics, 2014, 16, 11303-11309.	1.3	81
221	Highâ€Performance Langmuir–Blodgett Monolayer Transistors with High Responsivity. Angewandte Chemie - International Edition, 2010, 49, 6319-6323.	7.2	80
222	Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale, 2013, 5, 5576.	2.8	80
223	Strain-induced one-dimensional Landau level quantization in corrugated graphene. Physical Review B, 2013, 87, .	1.1	80
224	Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells. Advanced Materials, 2017, 29, 1700639.	11.1	80
225	Preparation and Characterization of a Porphyrin Self-Assembled Monolayer with a Controlled Orientation on Gold. Langmuir, 2000, 16, 537-540.	1.6	79
226	Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template. Langmuir, 2003, 19, 166-171.	1.6	78
227	Tunable Hybrid Photodetectors with Superhigh Responsivity. Small, 2009, 5, 2371-2376.	5.2	78
228	Electrochemistry at Chemically Assembled Single-Wall Carbon Nanotube Arrays. Journal of Physical Chemistry B, 2005, 109, 20906-20913.	1.2	77
229	Temperatureâ€Triggered Sulfur Vacancy Evolution in Monolayer MoS ₂ /Graphene Heterostructures. Small, 2017, 13, 1602967.	5.2	77
230	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
231	Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium–sulfur batteries. Nano Energy, 2019, 66, 104190.	8.2	77
232	Chirality-Dependent Transport Properties of Double-Walled Nanotubes Measured in Situ on Their Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 62-63.	6.6	76
233	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	6.6	75
234	Formation of a Porphyrin Monolayer Film by Axial Ligation of Protoporphyrin IX Zinc to an Amino-Terminated Silanized Glass Surface. Langmuir, 2000, 16, 1158-1162.	1.6	74

#	Article	IF	CITATIONS
235	Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon, 2005, 43, 2186-2191.	5.4	74
236	Free-standing TiO ₂ nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology, 2008, 19, 365708.	1.3	72
237	Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer. Advanced Materials, 2019, 31, e1901624.	11.1	72
238	Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li–S full batteries. Energy Storage Materials, 2021, 41, 141-151.	9.5	72
239	Photoactive Gate Dielectrics. Advanced Materials, 2010, 22, 3282-3287.	11.1	71
240	A Robust Ternary Heterostructured Electrocatalyst with Conformal Graphene Chainmail for Expediting Biâ€Directional Sulfur Redox in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2100586.	7.8	71
241	Possible tactics to improve the growth of single-walled carbon nanotubes by chemical vapor deposition. Carbon, 2002, 40, 2693-2698.	5.4	70
242	Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching. Nanotechnology, 2005, 16, 422-428.	1.3	70
243	Single-Walled Carbon Nanotube-Based Coaxial Nanowires:Â Synthesis, Characterization, and Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 1101-1107.	1.2	70
244	Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Research, 2019, 12, 3051-3058.	5.8	70
245	Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Applied Physics A: Materials Science and Processing, 1998, 66, S269-S271.	1.1	69
246	Raman spectroscopy of strained single-walled carbon nanotubes. Chemical Communications, 2009, , 6902.	2.2	69
247	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69
248	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
249	Rapid Growth of Large Singleâ€Crystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	11.1	69
250	Anisotropic carrier mobility in two-dimensional materials with tilted Dirac cones: theory and application. Physical Chemistry Chemical Physics, 2017, 19, 23942-23950.	1.3	69
251	Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 4016-4025.	6.6	69
252	Template Synthesis of an Ultrathin β-Graphdiyne-Like Film Using the Eglinton Coupling Reaction. ACS Applied Materials & Interfaces, 2019, 11, 2734-2739.	4.0	69

#	Article	IF	CITATIONS
253	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
254	CVD Growth of N-Doped Carbon Nanotubes on Silicon Substrates and Its Mechanism. Journal of Physical Chemistry B, 2005, 109, 9275-9279.	1.2	68
255	Selfâ€Assembled Binary Organic Granules with Multiple Lithium Uptake Mechanisms toward Highâ€Energy Flexible Lithiumâ€Ion Hybrid Supercapacitors. Advanced Energy Materials, 2018, 8, 1802273.	10.2	68
256	Graphene Transfer: Paving the Road for Applications of Chemical Vapor Deposition Graphene. Small, 2021, 17, e2007600.	5.2	68
257	Exploring Approaches for the Synthesis of Fewâ€Layered Graphdiyne. Advanced Materials, 2019, 31, e1803758.	11.1	67
258	All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Research, 2019, 12, 331-338.	5.8	67
259	Monolayer MoS ₂ Growth on Au Foils and Onâ€Site Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	7.8	66
260	Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Science Bulletin, 2019, 64, 659-668.	4.3	66
261	Ultrahighâ€Energy Density Lithiumâ€ion Cable Battery Based on the Carbonâ€Nanotube Woven Macrofilms. Small, 2018, 14, e1800414.	5.2	65
262	Separation of Metallic and Semiconducting Singleâ€Walled Carbon Nanotube Arrays by "Scotch Tape― Angewandte Chemie - International Edition, 2011, 50, 6819-6823.	7.2	64
263	Highly sensitive hot electron bolometer based on disordered graphene. Scientific Reports, 2013, 3, 3533.	1.6	64
264	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 14446-14451.	7.2	64
265	Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. Advanced Functional Materials, 2019, 29, 1904457.	7.8	64
266	Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film. The Journal of Physical Chemistry, 1992, 96, 1875-1880.	2.9	63
267	Two Distinct Buckling Modes in Carbon Nanotube Bending. Nano Letters, 2007, 7, 143-148.	4.5	62
268	Monolayer MoS ₂ Dendrites on a Symmetryâ€Ðisparate SrTiO ₃ (001) Substrate: Formation Mechanism and Interface Interaction. Advanced Functional Materials, 2016, 26, 3299-3305.	7.8	62
269	Switching Vertical to Horizontal Graphene Growth Using Faraday Cageâ€Assisted PECVD Approach for Highâ€Performance Transparent Heating Device. Advanced Materials, 2018, 30, 1704839.	11.1	62
270	Temperatureâ€Mediated Engineering of Graphdiyne Framework Enabling Highâ€Performance Potassium Storage. Advanced Functional Materials, 2020, 30, 2003039.	7.8	62

#	Article	IF	CITATIONS
271	Fabrication and characterization of well-dispersed single-walled carbon nanotube/polyaniline composites. Carbon, 2003, 41, 1670-1673.	5.4	61
272	Controllable Interconnection of Single-Walled Carbon Nanotubes under AC Electric Field. Journal of Physical Chemistry B, 2005, 109, 11420-11423.	1.2	61
273	Thinning Segregated Graphene Layers on High Carbon Solubility Substrates of Rhodium Foils by Tuning the Quenching Process. ACS Nano, 2012, 6, 10581-10589.	7.3	61
274	Plasmon-Enhanced Photothermoelectric Conversion in Chemical Vapor Deposited Graphene p–n Junctions. Journal of the American Chemical Society, 2013, 135, 10926-10929.	6.6	61
275	Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Journal of the American Chemical Society, 2015, 137, 12006-12012.	6.6	61
276	Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer. Physical Review B, 2013, 87, .	1.1	60
277	Ultraâ€Broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric. Advanced Materials, 2022, 34, .	11.1	60
278	Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables: percolation-dominated conductivity. Journal Physics D: Applied Physics, 2004, 37, 1965-1969.	1.3	59
279	Electric-Field-Enhanced Assembly of Single-Walled Carbon Nanotubes on a Solid Surface. Journal of Physical Chemistry B, 2005, 109, 5473-5477.	1.2	59
280	Single Gold-Nanoparticle-Enhanced Raman Scattering of Individual Single-Walled Carbon Nanotubes via Atomic Force Microscope Manipulation. Journal of Physical Chemistry C, 2008, 112, 7119-7123.	1.5	59
281	Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study. Nano Research, 2012, 5, 402-411.	5.8	59
282	van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene. Nano Letters, 2015, 15, 5585-5589.	4.5	59
283	Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 6207-6212.	11.1	58
284	Direct Synthesis of Few‣ayer Graphene on NaCl Crystals. Small, 2015, 11, 6302-6308.	5.2	57
285	A novel photoelectrochemical hybrid "one-way―process observed in the azobenzene system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 297, 133-144.	0.3	56
286	Graphene oated Atomic Force Microscope Tips for Reliable Nanoscale Electrical Characterization. Advanced Materials, 2013, 25, 1440-1444.	11.1	56
287	Graphdiyne Filter for Decontaminating Leadâ€ŀonâ€Polluted Water. Advanced Electronic Materials, 2017, 3, 1700122.	2.6	56
288	6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications. Nano Research, 2018, 11, 3106-3115.	5.8	56

#	Article	IF	CITATIONS
289	Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. ACS Nano, 2022, 16, 3163-3172.	7.3	56
290	Resonant Raman Spectroscopy of Individual Strained Single-Wall Carbon Nanotubes. Nano Letters, 2007, 7, 2116-2121.	4.5	55
291	Siteâ€Specific Transferâ€Printing of Individual Graphene Microscale Patterns to Arbitrary Surfaces. Advanced Materials, 2011, 23, 3938-3943.	11.1	55
292	Nickeloceneâ€Precursorâ€Facilitated Fast Growth of Graphene/hâ€BN Vertical Heterostructures and Its Applications in OLEDs. Advanced Materials, 2017, 29, 1701325.	11.1	54
293	Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers. Thin Solid Films, 1998, 327-329, 595-598.	0.8	53
294	Atomic-Scale Morphology and Electronic Structure of Manganese Atomic Layers Underneath Epitaxial Graphene on SiC(0001). ACS Nano, 2012, 6, 6562-6568.	7.3	53
295	Widely Tunable Carrier Mobility of Boron Nitrideâ€Embedded Graphene. Small, 2013, 9, 1373-1378.	5.2	53
296	Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity. ACS Nano, 2016, 10, 6725-6730.	7.3	53
297	Graphene Glass from Direct CVD Routes: Production and Applications. Advanced Materials, 2016, 28, 10333-10339.	11.1	52
298	Raman Spectra Variation of Partially Suspended Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1983-1987.	1.5	51
299	Tuning graphene morphology by substrate towards wrinkle-free devices: Experiment and simulation. Journal of Applied Physics, 2013, 113, .	1.1	51
300	The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth. Physical Chemistry Chemical Physics, 2015, 17, 29327-29334.	1.3	51
301	Electron-Driven <i>In Situ</i> Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano, 2019, 13, 978-995.	7.3	51
302	Kinetically Controlled Pt Deposition onto Self-Assembled Au Colloids:Â Preparation of Au (Core)â^'Pt (Shell) Nanoparticle Assemblies. Chemistry of Materials, 2004, 16, 3239-3245.	3.2	50
303	Weak antilocalization and electron–electron interaction in coupled multiple-channel transport in a Bi ₂ Se ₃ thin film. Nanoscale, 2016, 8, 1879-1885.	2.8	49
304	Electrocatalyst Modulation toward Bidirectional Sulfur Redox in Li–S Batteries: From Strategic Probing to Mechanistic Understanding. Advanced Energy Materials, 2022, 12, .	10.2	49
305	Demonstration of High-Resolution Capability of Chemical Force Titration via Study of Acid/Base Properties of a Patterned Self-Assembled Monolayer. Langmuir, 2000, 16, 517-521.	1.6	48
306	Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate. Langmuir, 2002, 18, 4495-4499.	1.6	48

#	Article	IF	CITATIONS
307	Electrochemical approach for fabricating nanogap electrodes with well controllable separation. Applied Physics Letters, 2005, 86, 123105.	1.5	48
308	Highlyâ€Safe and Ultraâ€Stable Allâ€Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications. Advanced Energy Materials, 2020, 10, 1904281.	10.2	48
309	Bimetallic Catalysts for the Efficient Growth of SWNTs on Surfaces. Chemistry of Materials, 2004, 16, 799-805.	3.2	47
310	Frustrated Molecular Packing in Highly Ordered Smectic Phase of Side-Chain Liquid Crystalline Polymer with Rigid Polyacetylene Backbone. Journal of the American Chemical Society, 2005, 127, 7668-7669.	6.6	47
311	Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers. Physical Review B, 2014, 90, .	1.1	47
312	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
313	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	6.6	47
314	Gold nanoparticulate film bound to silicon surface with self-assembled monolayers. Thin Solid Films, 1998, 327-329, 591-594.	0.8	46
315	Investigation of structure and chemical states of self-assembled Au nanoscale particles by angle-resolved X-ray photoelectron spectroscopy. Surface Science, 2000, 459, 183-190.	0.8	46
316	A facile preparation of transparent and monolithic mesoporous silica materials. Chemical Communications, 2000, , 477-478.	2.2	46
317	Formation mechanism of nonspherical gold nanoparticles during seeding growth: Roles of anion adsorption and reduction rate. Journal of Colloid and Interface Science, 2006, 293, 69-76.	5.0	46
318	Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. ChemNanoMat, 2016, 2, 9-18.	1.5	46
319	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	7.3	46
320	Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small, 2018, 14, e1800725.	5.2	46
321	Electrochemistry ofcis-Azobenzene Chromophore in Coulombically Linked Self-Assembled Monolayerâ ''Langmuirâ ''Blodgett Composite Monolayers. The Journal of Physical Chemistry, 1996, 100, 17337-17344.	2.9	45
322	Toward the Chemistry of Carboxylic Single-Walled Carbon Nanotubes by Chemical Force Microscopy. Journal of Physical Chemistry B, 2002, 106, 4139-4144.	1.2	45
323	Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nature Communications, 2013, 4, 2205.	5.8	45
324	Building graphene p–n junctions for next-generation photodetection. Nano Today, 2015, 10, 701-716.	6.2	45

#	Article	IF	CITATIONS
325	Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid. Nano Letters, 2016, 16, 2103-2107.	4.5	45
326	Large Singleâ€Crystal Cu Foils with Highâ€Index Facets by Strainâ€Engineered Anomalous Grain Growth. Advanced Materials, 2020, 32, e2002034.	11.1	45
327	Nano-Welding by Scanning Probe Microscope. Journal of the American Chemical Society, 2005, 127, 8268-8269.	6.6	44
328	Temperature Coefficients of Raman Frequency of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 14031-14034.	1.5	44
329	Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of Materials Chemistry A, 2019, 7, 12214-12224.	5.2	44
330	Direct insight into sulfiphilicity-lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li-S batteries. Journal of Energy Chemistry, 2022, 66, 474-482.	7.1	44
331	Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity. Nano Energy, 2020, 75, 104970.	8.2	44
332	Mirrorâ€Image Photoswitching of Individual Singleâ€Walled Carbon Nanotube Transistors Coated with Titanium Dioxide. Angewandte Chemie - International Edition, 2009, 48, 4759-4762.	7.2	43
333	Selective Positioning and Integration of Individual Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 205-209.	4.5	43
334	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
335	Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi―and Multilayer Graphene. Advanced Materials, 2017, 29, 1606741.	11.1	43
336	Biotemplated Synthesis of Transition Metal Nitride Architectures for Flexible Printed Circuits and Wearable Energy Storages. Advanced Functional Materials, 2018, 28, 1805510.	7.8	43
337	Massive Growth of Graphene Quartz Fiber as a Multifunctional Electrode. ACS Nano, 2020, 14, 5938-5945.	7.3	43
338	Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons. ACS Nano, 2021, 15, 11285-11295.	7.3	43
339	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
340	Altering Local Chemistry of Singleâ€Atom Coordination Boosts Bidirectional Polysulfide Conversion of Li–S Batteries. Advanced Functional Materials, 2022, 32, .	7.8	43
341	A Roadmap for Controlled Production of Topological Insulator Nanostructures and Thin Films. Small, 2015, 11, 3290-3305.	5.2	42
342	A Flexible and Transparent Graphene-Based Triboelectric Nanogenerator. IEEE Nanotechnology Magazine, 2016, 15, 435-441.	1.1	42

#	Article	IF	CITATIONS
343	Defect Location of Individual Single-Walled Carbon Nanotubes with a Thermal Oxidation Strategy. Journal of Physical Chemistry B, 2002, 106, 11085-11088.	1.2	41
344	Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Research, 2013, 6, 485-495.	5.8	41
345	The reconstructed edges of the hexagonal BN. Nanoscale, 2015, 7, 9723-9730.	2.8	41
346	Single Cr atom catalytic growth of graphene. Nano Research, 2018, 11, 2405-2411.	5.8	41
347	New Growth Frontier: Superclean Graphene. ACS Nano, 2020, 14, 10796-10803.	7.3	41
348	Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Advances, 2013, 3, 13720.	1.7	40
349	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	11.1	40
350	Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils. ACS Nano, 2022, 16, 285-294.	7.3	40
351	Langmuirâ^'Blodgett Films and Photophysical Properties of a C60â^'Sarcosine Methyl Ester Derivative, C60(C5H9NO2). The Journal of Physical Chemistry, 1996, 100, 3150-3156.	2.9	39
352	Fabrication of Microelectrode Arrays Using Microcontact Printing. Langmuir, 2000, 16, 9683-9686.	1.6	39
353	Chirality-Dependent Raman Frequency Variation of Single-Walled Carbon Nanotubes under Uniaxial Strain. Journal of Physical Chemistry C, 2008, 112, 20123-20125.	1.5	39
354	Selectiveâ€Area Van der Waals Epitaxy of Topological Insulator Grid Nanostructures for Broadband Transparent Flexible Electrodes. Advanced Materials, 2013, 25, 5959-5964.	11.1	39
355	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	5.2	39
356	The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile. Chemical Physics Letters, 2003, 380, 347-351.	1.2	38
357	Iron Catalysts Reactivation for Efficient CVD Growth of SWNT with Base-growth Mode on Surface. Journal of Physical Chemistry B, 2004, 108, 12665-12668.	1.2	38
358	Purification and length separation of single-walled carbon nanotubes using chromatographic method. Synthetic Metals, 2005, 155, 455-460.	2.1	38
359	Crinkling Ultralong Carbon Nanotubes into Serpentines by a Controlled Landing Process. Advanced Materials, 2009, 21, 4158-4162.	11.1	38
360	Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry, 2013, 688, 243-248.	1.9	38

#	Article	IF	CITATIONS
361	Unique Transformation from Graphene to Carbide on Re(0001) Induced by Strong Carbon–Metal Interaction. Journal of the American Chemical Society, 2017, 139, 17574-17581.	6.6	38
362	Difference between the electrochemical reductivities of trans and cis isomers of an azo compound in the assembled monolayer film. Journal of Electroanalytical Chemistry, 1992, 324, 259-267.	1.9	37
363	Reproducible Patterning of Single Au Nanoparticles on Silicon Substrates by Scanning Probe Oxidation and Self-Assembly. Journal of Physical Chemistry B, 2005, 109, 2657-2665.	1.2	37
364	Human‣ike Sensing and Reflexes of Grapheneâ€Based Films. Advanced Science, 2016, 3, 1600130.	5.6	37
365	Periodic Modulation of the Doping Level in Striped MoS ₂ Superstructures. ACS Nano, 2016, 10, 3461-3468.	7.3	37
366	Highly Conductive Nitrogen-Doped Graphene Grown on Glass toward Electrochromic Applications. ACS Applied Materials & Interfaces, 2018, 10, 32622-32630.	4.0	37
367	Quasiâ€2D Growth of Aluminum Nitride Film on Graphene for Boosting Deep Ultraviolet Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001272.	5.6	37
368	Force titration of amino group-terminated self-assembled monolayers of 4-aminothiophenol on gold using chemical force microscopy. Thin Solid Films, 1998, 327-329, 778-780.	0.8	36
369	Laser-Heating Effect on Raman Spectra of Individual Suspended Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1988-1992.	1.5	36
370	New Frontiers in Electron Beam–Driven Chemistry in and around Graphene. Advanced Materials, 2019, 31, e1800715.	11.1	36
371	Highâ€Performance Li–O ₂ Batteries Based on Allâ€Graphene Backbone. Advanced Functional Materials, 2020, 30, 2007218.	7.8	36
372	In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Research, 2022, 15, 9785-9791.	5.8	36
373	Excellent Reversible Photochromic Behavior of 4-Octyl-4′-(5-carboxylpentamethyleneoxy)-azobenzene in Organized Monolayer Assemblies. Chemistry Letters, 1990, 19, 1023-1026.	0.7	35
374	Monitoring Electron Transfer in an Azobenzene Self-Assembled Monolayer byin SituInfrared Reflection Absorption Spectroscopy. Langmuir, 1998, 14, 619-624.	1.6	35
375	Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Research, 2011, 4, 712-721.	5.8	35
376	Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Research, 2013, 6, 671-678.	5.8	35
377	Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 2017, 8, 2209-2214.	3.7	35
378	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	4.7	35

#	Article	IF	CITATIONS
379	High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano, 2018, 12, 12612-12618.	7.3	35
380	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Science Advances, 2021, 7, .	4.7	35
381	Fabricating an azobenzene self-assembled monolayer via step-by-step surface modification of a cysteamine monolayer on gold. Journal of Electroanalytical Chemistry, 1997, 438, 221-224.	1.9	34
382	The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using X-ray photoelectron spectroscopy. Surface Science, 2000, 461, 199-207.	0.8	34
383	Scanning-Tunneling-Microscopy Based Thermochemical Hole Burning on a New Charge-Transfer Complex and Its Potential for Data Storage. Advanced Materials, 2005, 17, 459-464.	11.1	34
384	Electronic structures of graphene layers on a metal foil: The effect of atomic-scale defects. Applied Physics Letters, 2013, 103, .	1.5	34
385	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	4.5	34
386	Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. Journal of Materials Chemistry A, 2019, 7, 4813-4822.	5.2	34
387	Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Research, 2021, 14, 1413-1420.	5.8	34
388	Atomic Force Microscopy-Based Nanolithography on Silicon Using Colloidal Au Nanoparticles As a Nanooxidation Mask. Langmuir, 2000, 16, 9673-9676.	1.6	33
389	Electric Current Aligning Component Units during Graphene Fiber Joule Heating. Advanced Functional Materials, 2022, 32, 2103493.	7.8	33
390	Tuning the Diameter of Single-Walled Carbon Nanotubes by Temperature-Mediated Chemical Vapor Deposition. Journal of Physical Chemistry C, 2009, 113, 13051-13059.	1.5	32
391	Intrinsic carrier mobility of Dirac cones: The limitations of deformation potential theory. Journal of Chemical Physics, 2014, 141, 144107.	1.2	32
392	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9, 3048-3055.	5.8	32
393	Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition. Nanoscale, 2017, 9, 3561-3567.	2.8	32
394	Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply. ACS Nano, 2019, 13, 10272-10278.	7.3	32
395	Biomass Template Derived Boron/Oxygen Coâ€Doped Carbon Particles as Advanced Anodes for Potassium″on Batteries. Energy and Environmental Materials, 2022, 5, 344-352.	7.3	32
396	Synchronous Promotion in Sodiophilicity and Conductivity of Flexible Host via Vertical Graphene Cultivator for Longevous Sodium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101233.	7.8	32

#	Article	IF	CITATIONS
397	Finely Tuning Metallic Nanogap Size with Electrodeposition by Utilizing High-Frequency Impedance in Feedback. Angewandte Chemie - International Edition, 2005, 44, 7771-7775.	7.2	31
398	Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Applied Physics Letters, 2008, 92, 023109.	1.5	31
399	One-Step in Situ Synthesis of Poly(methyl methacrylate)-Grafted Single-Walled Carbon Nanotube Composites. Journal of Physical Chemistry C, 2009, 113, 9670-9675.	1.5	31
400	Graphene Glass Inducing Multidomain Orientations in Cholesteric Liquid Crystal Devices toward Wide Viewing Angles. ACS Nano, 2018, 12, 6443-6451.	7.3	31
401	Atomic mechanism of strong interactions at the graphene/sapphire interface. Nature Communications, 2019, 10, 5013.	5.8	31
402	Verticalâ€Grapheneâ€Reinforced Titanium Alloy Bipolar Plates in Fuel Cells. Advanced Materials, 2022, 34, e2110565.	11.1	31
403	Determination of locations of sulfur, amide-nitrogen and azo-nitrogen in self-assembled monolayers of alkanethiols and azobenzenethiols on Au (111) and GaAs (100) by angle-resolved X-ray photoelectron spectroscopy. Surface Science, 1999, 440, 142-150.	0.8	30
404	A Self-Assembled Monolayer of an Alkanoic Acid-Derivatized Porphyrin on Gold Surface: A Structural Investigation by Surface Plasmon Resonance, Ultraviolet–Visible, and Infrared Spectroscopies. Journal of Colloid and Interface Science, 2001, 243, 382-387.	5.0	30
405	Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS ₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332.	1.9	30
406	Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Research, 2017, 10, 355-363.	5.8	30
407	Photoâ€induced Free Radical Modification of Graphene. Small, 2013, 9, 1134-1143.	5.2	29
408	Photoinduced Methylation of Graphene. Small, 2013, 9, 1348-1352.	5.2	29
409	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ Pbl ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
410	Dual-Emitter Graphene Glass Fiber Fabric for Radiant Heating. ACS Nano, 2022, 16, 2577-2584.	7.3	29
411	Molecular Orientation and Electrochemical Stability of Azobenzene Self-Assembled Monolayers on Gold:Â An In-Situ FTIR Study. Langmuir, 2000, 16, 6948-6954.	1.6	28
412	On-the-spot growth. Nature Materials, 2016, 15, 9-10.	13.3	28
413	Carbon Nanostructures as a Multi-Functional Platform for Sensing Applications. Chemosensors, 2018, 6, 60.	1.8	28
414	Accelerated Li–S chemistry at a cooperative interface built <i>in situ</i> . Journal of Materials Chemistry A, 2019, 7, 20750-20759.	5.2	28

#	Article	IF	CITATIONS
415	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2020, 59, 17214-17218.	7.2	28
416	Waxâ€Transferred Hydrophobic CVD Graphene Enables Waterâ€Resistant and Dendriteâ€Free Lithium Anode toward Long Cycle Li–Air Battery. Advanced Science, 2021, 8, e2100488.	5.6	28
417	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	11.1	28
418	Azobenzene-Derivative Langmuir-Blodgett Films Deposited on Various Thiol Monolayers. The Journal of Physical Chemistry, 1995, 99, 14771-14777.	2.9	27
419	Grow Single-Walled Carbon Nanotubes Cross-Bar in One Batch. Journal of Physical Chemistry C, 2009, 113, 5341-5344.	1.5	27
420	Electroluminescence from Suspended and On-Substrate Metallic Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1747-1751.	4.5	27
421	Strong Adlayer–Substrate Interactions "Break―the Patching Growth of <i>h</i> -BN onto Graphene on Re(0001). ACS Nano, 2017, 11, 1807-1815.	7.3	27
422	Defects guided wrinkling in graphene on copper substrate. Carbon, 2019, 143, 736-742.	5.4	27
423	Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene. Small, 2020, 16, e1902844.	5.2	27
424	Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001483.	7.8	27
425	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	1.9	27
426	An Anodeâ€Free Potassiumâ€Metal Battery Enabled by a Directly Grown Grapheneâ€Modulated Aluminum Current Collector. Advanced Materials, 2022, 34, e2202902.	11.1	27
427	Poly(methyl methacrylate) nanobrushes on silicon based on localized surface-initiated polymerization. Applied Surface Science, 2004, 222, 338-345.	3.1	26
428	Simultaneous Dielectrophoretic Separation and Assembly of Single-Walled Carbon Nanotubes on Multigap Nanoelectrodes and Their Thermal Sensing Properties. Analytical Chemistry, 2006, 78, 8069-8075.	3.2	26
429	Systematic Comparison of the Raman Spectra of Metallic and Semiconducting SWNTs. Journal of Physical Chemistry C, 2008, 112, 8319-8323.	1.5	26
430	Substrateâ€Induced Graphene Chemistry for 2D Superlattices with Tunable Periodicities. Advanced Materials, 2016, 28, 2148-2154.	11.1	26
431	Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Materials, 2018, 12, 110-118.	9.5	26
432	Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications. ACS Nano, 2020, 14, 15327-15335.	7.3	26

#	Article	IF	CITATIONS
433	Optical detection of the susceptibility tensor in two-dimensional crystals. Communications Physics, 2021, 4, .	2.0	26
434	Enrichment of Large-Diameter Single-Walled Carbon Nanotubes by Oxidative Acid Treatment. Journal of Physical Chemistry B, 2002, 106, 7160-7162.	1.2	25
435	Raman Spectral Probing of Electronic Transition EnergyEiiVariation of Individual SWNTs under Torsional Strain. Nano Letters, 2007, 7, 750-753.	4.5	25
436	A General Electrochemical Strategy for Synthesizing Chargeâ€Transfer Complex Micro/Nanowires. Advanced Functional Materials, 2010, 20, 1209-1223.	7.8	25
437	Bandgap opening in Janus-type mosaic graphene. Journal of Applied Physics, 2013, 113, .	1.1	25
438	Controllable Sliding Transfer of Wafer‧ize Graphene. Advanced Science, 2016, 3, 1600006.	5.6	25
439	Identifying the Non-Identical Outermost Selenium Atoms and Invariable Band Gaps across the Grain Boundary of Anisotropic Rhenium Diselenide. ACS Nano, 2018, 12, 10095-10103.	7.3	25
440	Thermochemical Hole Burning on a Series of N-Substituted Morpholinium 7,7,8,8-Tetracyanoquinodimethane Charge-Transfer Complexes for Data Storage. Journal of Physical Chemistry B, 2005, 109, 22486-22490.	1.2	24
441	Graphene/ <i>h</i> â€BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications. Advanced Energy Materials, 2016, 6, 1600541.	10.2	24
442	Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Research, 2016, 9, 249-259.	5.8	24
443	High elastic moduli, controllable bandgap and extraordinary carrier mobility in single-layer diamond. Journal of Materials Chemistry C, 2020, 8, 13819-13826.	2.7	24
444	Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted Li–S chemistry. Chemical Engineering Journal, 2021, 418, 129407.	6.6	24
445	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light: Science and Applications, 2022, 11, 88.	7.7	24
446	Freestanding Graphene Fabric Film for Flexible Infrared Camouflage. Advanced Science, 2022, 9, e2105004.	5.6	24
447	Thermochemical Hole Burning on a Triethylammonium Bis-7,7,8,8-tetracyanoquinodimethane Charge-Transfer Complex Using Single-Walled Carbon Nanotube Scanning Tunneling Microscopy Tips. Journal of Physical Chemistry B, 2005, 109, 3526-3530.	1.2	23
448	Raman Spectral Measuring of the Growth Rate of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 8407-8409.	1.5	23
449	Graphenequantum dots embedded in a hexagonal BN sheet: identical influences of zigzag/armchair edges. Physical Chemistry Chemical Physics, 2013, 15, 803-806.	1.3	23
450	Boron Nitride Film as a Buffer Layer in Deposition of Dielectrics on Graphene. Small, 2014, 10, 2293-2299.	5.2	23

#	Article	IF	CITATIONS
451	Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices. Nanoscale Advances, 2020, 2, 2220-2233.	2.2	23
452	The Mechanism of Graphene Vapor–Solid Growth on Insulating Substrates. ACS Nano, 2021, 15, 7399-7408.	7.3	23
453	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Interfaces, 2021, 13, 29926-29935.	4.0	23
454	Controllable Synthesis of Wafer cale Graphene Films: Challenges, Status, and Perspectives. Small, 2021, 17, e2008017.	5.2	23
455	Electrochemical actinometry using the assembled monolayer film of an azo compound. Analytical Chemistry, 1992, 64, 134-137.	3.2	22
456	Langmuir-Blodgett film and nonlinear optical property of C60-glycine ester derivative. Chemical Physics Letters, 1995, 235, 548-551.	1.2	22
457	Structural evaluation of azobenzene-functionalized self-assembled monolayers on gold by reflectance FTIR spectroscopy. Chemical Physics Letters, 1997, 271, 90-94.	1.2	22
458	Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. Applied Physics Letters, 2007, 90, 253113.	1.5	22
459	Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties. Frontiers of Physics, 2012, 7, 208-217.	2.4	22
460	Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Research, 2013, 6, 887-896.	5.8	22
461	Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2016, 10, 7248-7266.	7.3	22
462	Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research, 2020, 13, 1564-1570.	5.8	22
463	Precise replication of antireflective nanostructures from biotemplates. Applied Physics Letters, 2007, 90, 123115.	1.5	21
464	Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms. Small, 2013, 9, 1360-1366.	5.2	21
465	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	11.1	21
466	Mineralâ€Templated 3D Graphene Architectures for Energyâ€Efficient Electrodes. Small, 2018, 14, e1801009.	5.2	21
467	Doping of Graphene Films: Open the way to Applications in Electronics and Optoelectronics. Advanced Functional Materials, 2022, 32, .	7.8	21
468	A Novel Electrochemical Quantification Method for Trans/Cis Interconversion of Azo Compounds in a Solid Monolayer Film. Chemistry Letters, 1990, 19, 2177-2180.	0.7	20

#	Article	IF	CITATIONS
469	Polymerization of short single-walled carbon nanotubes into large strands. Carbon, 2003, 41, 598-601.	5.4	20
470	A General Approach to Chemical Modification of Single-Walled Carbon Nanotubes with Peroxy Organic Acids and Its Application in Polymer Grafting. Journal of Physical Chemistry C, 2007, 111, 2379-2385.	1.5	20
471	First-principles study of the transport behavior of zigzag graphene nanoribbons tailored by strain. AIP Advances, 2012, 2, .	0.6	20
472	H ₂ Oâ€Etchantâ€Promoted Synthesis of Highâ€Quality Graphene on Glass and Its Application in Seeâ€Through Thermochromic Displays. Small, 2020, 16, e1905485.	5.2	20
473	Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Research, 2021, 14, 260-267.	5.8	20
474	Photoluminescence Recovery from Single-Walled Carbon Nanotubes on Substrates. Journal of the American Chemical Society, 2007, 129, 12382-12383.	6.6	19
475	Tunable Spin–Orbit Interaction in Trilayer Graphene Exemplified in Electric-Double-Layer Transistors. Nano Letters, 2012, 12, 2212-2216.	4.5	19
476	Free Radical Reactions in Two Dimensions: A Case Study on Photochlorination of Graphene. Small, 2013, 9, 1388-1396.	5.2	19
477	Novel graphene–oxide–semiconductor nanowire phototransistors. Journal of Materials Chemistry C, 2014, 2, 1592.	2.7	19
478	Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties. Nano Letters, 2020, 20, 6798-6806.	4.5	19
479	Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. Small, 2021, 17, e2005573.	5.2	19
480	Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, 8, .	5.5	19
481	Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry, 2022, 904, 115883.	1.9	19
482	Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability. Nanoscale, 2013, 5, 10816.	2.8	18
483	Uniform single-layer graphene growth on recyclable tungsten foils. Nano Research, 2015, 8, 592-599.	5.8	18
484	Edge‣tatesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions. Advanced Electronic Materials, 2016, 2, 1600048.	2.6	18
485	Modulating the Electronic Properties of Monolayer Graphene Using a Periodic Quasi-One-Dimensional Potential Generated by Hex-Reconstructed Au(001). ACS Nano, 2016, 10, 7550-7557.	7.3	18
486	An ultrafast terahertz probe of the transient evolution of the charged and neutral phase of photo-excited electron-hole gas in a monolayer semiconductor. 2D Materials, 2016, 3, 014001.	2.0	18

#	Article	IF	CITATIONS
487	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for Highâ€Performance Deepâ€Ultraviolet Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 5, 1800662.	1.9	18
488	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Letters, 2020, 20, 2175-2182.	4.5	18
489	Harmonized edge/graphiticâ€nitrogen doped carbon nanopolyhedron@nanosheet composite via saltâ€confined strategy for advanced <scp>K</scp> â€ion hybrid capacitors. InformaÄnA-Materiály, 2021, 3, 891-903.	8.5	18
490	Scanning tunneling microscopic images of an azobenzene derivative differently deposited on highly oriented pyrolytic graphite surfaces. Surface Science, 1990, 227, 1-6.	0.8	17
491	Photochromic and electrochemical behavior of a crown-ether-derived azobenzene monolayer assembly. Journal of Electroanalytical Chemistry, 1997, 438, 127-131.	1.9	17
492	Electron beam-induced structure transformation of single-walled carbon nanotubes. Carbon, 2002, 40, 2282-2284.	5.4	17
493	Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111). Thin Solid Films, 2006, 515, 1847-1850.	0.8	17
494	Scanning probe lithography for nanoimprinting mould fabrication. Nanotechnology, 2006, 17, 3018-3022.	1.3	17
495	Fabrication of electromechanical switch using interconnected single-walled carbon nanotubes. Applied Physics Letters, 2008, 92, .	1.5	17
496	Mirror-Image Photoswitching in a Single Organic Thin-Film Transistor. Journal of Physical Chemistry Letters, 2010, 1, 1269-1276.	2.1	17
497	One‣tep Growth of Graphene/Carbon Nanotube Hybrid Films on Sodaâ€Lime Glass for Transparent Conducting Applications. Advanced Electronic Materials, 2017, 3, 1700212.	2.6	17
498	Ethanol-Precursor-Mediated Growth and Thermochromic Applications of Highly Conductive Vertically Oriented Graphene on Soda-Lime Glass. ACS Applied Materials & Interfaces, 2020, 12, 11972-11978.	4.0	17
499	In situ CdS nanocluster formation on scanning tunneling microscopy tips for reliable single-electron tunneling at room temperature. Applied Physics Letters, 1999, 75, 3023-3025.	1.5	16
500	Nanobarrier-terminated growth of single-walled carbon nanotubes on quartz surfaces. Nano Research, 2009, 2, 768.	5.8	16
501	Highâ€Quality Monolayer Graphene Synthesis on Pd Foils via the Suppression of Multilayer Growth at Grain Boundaries. Small, 2014, 10, 4003-4011.	5.2	16
502	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	5.8	16
503	Enhancing the Heat-Dissipation Efficiency in Ultrasonic Transducers via Embedding Vertically Oriented Graphene-Based Porcelain Radiators. Nano Letters, 2020, 20, 5097-5105.	4.5	16
504	Structure-induced partial phase transformation endows hollow TiO ₂ /TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. Journal of Materials Chemistry A, 2021, 9, 12109-12118.	5.2	16

#	Article	IF	CITATIONS
505	Chemical Vapor Deposition Synthesis of Graphene over Sapphire Substrates. ChemNanoMat, 2021, 7, 515-525.	1.5	16
506	Two-peak photoluminescence and light-emitting mechanism of porous silicon. Physical Review B, 1995, 51, 11194-11197.	1.1	15
507	Studies on the Surface-Enhanced Infrared Spectroscopy of Langmuirâ^'Blodgett Monolayers of Azobenzene Carboxylic Acid on Silver Island Films. Langmuir, 1998, 14, 5521-5525.	1.6	15
508	Atomic Force Microscopy Evidence of Citrate Displacement by 4-Mercaptopyridine on Gold in Aqueous Solutionâ€. Langmuir, 2000, 16, 4554-4557.	1.6	15
509	Solution phase synthesis of magnesium hydroxide sulfate hydrate nanoribbons. Nanotechnology, 2004, 15, 1625-1627.	1.3	15
510	A New Route to Large-Scale Synthesis of Silicon Nanowires in Ultrahigh Vacuum. Advanced Functional Materials, 2007, 17, 1729-1734.	7.8	15
511	Structure, Physical Properties and Phase Transition of a Quasi-One-Dimensional Organic Semiconductor DBA(TCNQ)2. Journal of Physical Chemistry C, 2008, 112, 11001-11006.	1.5	15
512	Organic charge-transfer complexes for STM-based thermochemical-hole-burning memory. Coordination Chemistry Reviews, 2010, 254, 1151-1168.	9.5	15
513	Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology, 2013, 24, 495501.	1.3	15
514	Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. ACS Nano, 2016, 10, 6323-6330.	7.3	15
515	Movement of Dirac points and band gaps in graphyne under rotating strain. Nano Research, 2017, 10, 2005-2020.	5.8	15
516	Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials. Inorganic Chemistry Frontiers, 2021, 8, 182-200.	3.0	15
517	Transferâ€Enabled Fabrication of Graphene Wrinkle Arrays for Epitaxial Growth of AlN Films. Advanced Materials, 2022, 34, e2105851.	11.1	15
518	Constructing different `bridges' for interfacial electron transfer in azobenzene LB/SAM composite bilayers. Journal of Electroanalytical Chemistry, 1998, 448, 119-124.	1.9	14
519	Structural investigation of a new series of azobenzene-containing self-assembled monolayers on gold. Materials Science and Engineering C, 1999, 8-9, 179-185.	3.8	14
520	Photoinduced Dimerization of ap-Phenylenediacrylic Acid Derivative in a Langmuir Monolayer Mixed with Stearic-d35Acid on a Water Surface. Langmuir, 1999, 15, 2543-2550.	1.6	14
521	Fabrication of metallic nanostructures by negative nanoimprint lithography. Nanotechnology, 2005, 16, 2779-2784.	1.3	14
522	Fabrication of Chemical Graphene Nanoribbons via Edgeâ€Selective Covalent Modification. Advanced Materials, 2015, 27, 4093-4096.	11.1	14

#	Article	IF	CITATIONS
523	In Situ Nâ€Doped Graphene and Mo Nanoribbon Formation from Mo ₂ Ti ₂ C ₃ MXene Monolayers. Small, 2020, 16, e1907115.	5.2	14
524	Parallel molecular stacks of organic thin film with electrical bistability. Applied Physics Letters, 2000, 76, 2532-2534.	1.5	13
525	â€~Pulsed' CVD growth of single-walled carbon nanotubes. Carbon, 2003, 41, 2876-2878.	5.4	13
526	Surfactant-Resisted Assembly of Fe-Containing Nanoparticles for Site-Specific Growth of SWNTs on Si Surface. Journal of Physical Chemistry B, 2005, 109, 10946-10951.	1.2	13
527	Anisotropic Thermochemical Hole Burning Phenomenon on TTFâ^TCNQ Single Crystal. Journal of Physical Chemistry C, 2007, 111, 631-635.	1.5	13
528	Manipulation of Ultralong Single-Walled Carbon Nanotubes at Macroscale. Journal of Physical Chemistry C, 2008, 112, 9963-9965.	1.5	13
529	Single-Walled Carbon Nanotubes Probing the Denaturation of Lysozyme. Journal of Physical Chemistry C, 2010, 114, 7717-7720.	1.5	13
530	In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation. Nano Letters, 2017, 17, 4725-4732.	4.5	13
531	Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001). Nano Research, 2017, 10, 3875-3884.	5.8	13
532	In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope. Materials, 2018, 11, 896.	1.3	13
533	Chemical Vapor Deposition Method for Graphene Fiber Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	13
534	Electrochemical quartz crystal microbalance studies on the two reduction processes of conducting polypyrrole nitrate films in aqueous solutions. Synthetic Metals, 1998, 94, 131-133.	2.1	12
535	Uniform Electrochemical Deposition of Copper onto Self-Assembled Gold Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 3535-3539.	1.2	12
536	<i>G</i> -band Variation of Individual Single-Walled Carbon Nanotubes under Torsional Strain. Journal of Physical Chemistry C, 2008, 112, 10789-10793.	1.5	12
537	Electrochemical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13346-13348.	1.5	12
538	An electrical switch based on Ag-tetracyanoquinodimethane sandwiched by crossed carbon nanotube electrodes. Applied Physics Letters, 2008, 93, 123115.	1.5	12
539	Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF–TCNQ as the contact material. Nanotechnology, 2009, 20, 505204	1.3	12
540	Sandwiched graphene/hBN/graphene photonic crystal fibers with high electro-optical modulation depth and speed. Nanoscale, 2020, 12, 14472-14478.	2.8	12

#	Article	IF	CITATIONS
541	Grapheneâ€Nanorod Enhanced Quasiâ€Van Der Waals Epitaxy for High Indium Composition Nitride Films. Small, 2021, 17, e2100098.	5.2	12
542	Segregation Phenomenon and Its Control in the Catalytic Growth of Graphene. Acta Chimica Sinica, 2013, 71, 308.	0.5	12
543	Scanning tunneling microscopic and transmission electron microscopic studies of cytochrome c551 denaturation at the air–water interface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1766.	1.6	11
544	Further evidence for the quantum confined electrochemistry model of the formation mechanism of pâ~'â€ŧype porous silicon. Applied Physics Letters, 1996, 69, 3399-3401.	1.5	11
545	SPM-based nanofabrication using a synchronization technique. Applied Physics A: Materials Science and Processing, 1998, 66, S715-S717.	1.1	11
546	Photoelectric response of a gold electrode modified with self-assembled monolayers of pyrrolidinofullerenes. New Journal of Chemistry, 2001, 25, 606-610.	1.4	11
547	Irreparable Defects Produced by the Patching of <i>h</i> -BN Frontiers on Strongly Interacting Re(0001) and Their Electronic Properties. Journal of the American Chemical Society, 2017, 139, 5849-5856.	6.6	11
548	Decimeter-Scale Atomically Thin Graphene Membranes for Gas–Liquid Separation. ACS Applied Materials & Interfaces, 2021, 13, 10328-10335.	4.0	11
549	Identifying the Evolution of Seâ€Vacancyâ€Modulated MoSe2 Pre atalyst in Li–S Chemistry. Angewandte Chemie, 0, , .	1.6	11
550	Vertical graphene-coated Cu wire for enhanced tolerance to high current density in power transmission. Nano Research, 2022, 15, 9727-9733.	5.8	11
551	Synthesis and pH Dependent Optical Properties of Gold Nanoparticles Capped with Mercaptopropionic Acid. Molecular Crystals and Liquid Crystals, 1999, 337, 245-248.	0.3	10
552	Ab Initio Studies on the Thermal Dissociation Channels ofcis- andtrans-Azomethane. Journal of Physical Chemistry A, 2002, 106, 6792-6801.	1.1	10
553	Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. Journal of Physical Chemistry B, 2004, 108, 14800-14803.	1.2	10
554	Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Advances, 2019, 9, 13527-13532.	1.7	10
555	Toward Direct Growth of Ultraâ€Flat Graphene. Advanced Functional Materials, 2022, 32, .	7.8	10
556	Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer. Nano Letters, 2022, 22, 3364-3371.	4.5	10
557	Effect of the molecular interaction on molecular packing and orientation in azobenzene-functionalized self-assembled monolayers on gold. Thin Solid Films, 1998, 327-329, 195-198.	0.8	9
558	Theoretical studies on force titration of amino-group-terminated self-assembled monolayers. Computational and Theoretical Chemistry, 1998, 451, 295-303.	1.5	9

#	Article	IF	CITATIONS
559	High-Density Growth of Single-Wall Carbon Nanotubes on Silicon by Fabrication of Nanosized Catalyst Thin Films. Chemistry of Materials, 2002, 14, 4262-4266.	3.2	9
560	Large-scale fabrication of uniform gold nanoparticles in ultrahigh vacuum. Journal of Crystal Growth, 2005, 285, 372-379.	0.7	9
561	Scanning tunneling microscope-based thermochemical hole burning on a series of charge transfer complexes. Applied Physics Letters, 2005, 86, 133105.	1.5	9
562	Nanoveneers: An Electrochemical Approach to Synthesizing Conductive Layered Nanostructures. ACS Nano, 2011, 5, 4000-4006.	7.3	9
563	Rapid growth of angle-confined large-domain graphene bicrystals. Nano Research, 2017, 10, 1189-1199.	5.8	9
564	CVD Synthesis of Graphene. , 2017, , 19-56.		9
565	Designing Newâ€Generation Piezoelectric Transducers by Embedding Superior Grapheneâ€Based Thermal Regulators. Advanced Materials, 2021, 33, e2103141.	11.1	9
566	Photoelectrochemical behavior of an azobenzene derivative in Langmuir-Blodgett films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 270, 437-443.	0.3	8
567	Oxidation kinetics of a Ru(bpy)33+ derivative in Langmuir-Blodgett layers. Comparison to Ru(bpy)33+ in homogeneous solutions. Langmuir, 1993, 9, 818-823.	1.6	8
568	Reflectance spectra of individual single-walled carbon nanotubes. Nanotechnology, 2008, 19, 045708.	1.3	8
569	2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes. Advanced Materials, 2015, 27, 4315-4321.	11.1	8
570	Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film. ACS Applied Materials & Interfaces, 2021, 13, 4835-4843.	4.0	8
571	Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. National Science Review, 2022, 9, .	4.6	8
572	Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications. Applied Materials Today, 2020, 20, 100651.	2.3	8
573	pH-Dependent Assembling of Cold Nanoparticles on p -Aminothiophenol Modified Gold Substrate. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 968-974.	2.2	8
574	Graphene-Based LED: from Principle to Devices. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1907004-0.	2.2	8
575	Direct Plasmaâ€Enhancedâ€Chemicalâ€Vaporâ€Deposition Syntheses of Vertically Oriented Graphene Films on Functional Insulating Substrates for Wideâ€Range Applications. Advanced Functional Materials, 2022, 32, .	7.8	8
576	Complementary Chemical Vapor Deposition Fabrication for Largeâ€Area Uniform Graphene Glass Fiber Fabric. Small Methods, 2022, 6, .	4.6	8

#	Article	IF	CITATIONS
577	Unique reactions of photoexcited organic molecules at the electrode/liquid interface. Faraday Discussions, 1992, 94, 221.	1.6	7
578	Studies on the Molecular Environment and Reaction Kinetics of Photo-Oligomerization in Langmuirâ [°] 'Blodgett Films of 4-(4-(2-(Octadecyloxycarbonyl)vinyl)- cinnamoylamino)benzoic Acid. Langmuir, 2000, 16, 2275-2280.	1.6	7
579	Study on the delicate nanostructures formed on Au(111) by scanning tunneling microscopy (STM). Microelectronic Engineering, 2002, 63, 381-389.	1.1	7
580	Local Gate Effect of Mechanically Deformed Crossed Carbon Nanotube Junction. Nano Letters, 2010, 10, 4715-4720.	4.5	7
581	From 2004 to 2014: A Fruitful Decade for Graphene Research in China. Small, 2014, 10, 2121-2121.	5.2	7
582	Rational Design of Binary Alloys for Catalytic Growth of Graphene via Chemical Vapor Deposition. Catalysts, 2020, 10, 1305.	1.6	7
583	The SERS Intensity vs the Size of Au Nanoparticles. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 476-480.	2.2	7
584	Graphene Fibers: Preparation, Properties, and Applications. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	7
585	Photochemical Modification of Graphene. Acta Chimica Sinica, 2014, 72, 289.	0.5	7
586	Hydrophilic, Clean Graphene for Cell Culture and Cryo-EM Imaging. Nano Letters, 2021, 21, 9587-9593.	4.5	7
587	Controllable Growth of Graphene Photonic Crystal Fibers with Tunable Optical Nonlinearity. ACS Photonics, 2022, 9, 961-968.	3.2	7
588	Slipâ€Lineâ€Guided Growth of Graphene. Advanced Materials, 2022, 34, e2201188.	11.1	7
589	Thermal cis—trans isomerization kinetics of azo compound in the assembled monolayer film: an electrochemical approach. Chemical Physics Letters, 1991, 185, 501-504.	1.2	6
590	Monitoring the Electrochemical Transformation of an Azobenzene-Terminated Alkanethiolate Monolayer at Gold by Chemical Force Microscopy. Molecular Crystals and Liquid Crystals, 1999, 337, 305-308.	0.3	6
591	Room Temperature Single Electron Tunneling in Nanoparticle-STM Tip Assemblies. Molecular Crystals and Liquid Crystals, 1999, 337, 317-320.	0.3	6
592	Sequential assembly of metal-free phthalocyanine on few-layer epitaxial graphene mediated by thickness-dependent surface potential. Nano Research, 2012, 5, 543-549.	5.8	6
593	Epitaxial Growth of Asymmetricallyâ€Đoped Bilayer Graphene for Photocurrent Generation. Small, 2014, 10, 2245-2250.	5.2	6
594	Graphene—From basic science to useful technology. National Science Review, 2015, 2, 16-16.	4.6	6

#	Article	IF	CITATIONS
595	Controllable synthesis of graphene using novel aromatic 1,3,5-triethynylbenzene molecules on Rh(111). RSC Advances, 2015, 5, 76620-76625.	1.7	6
596	Macroscale single crystal graphene templated directional alignment of liquid-crystal microlens array for light field imaging. Applied Physics Letters, 2019, 115, .	1.5	6
597	Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst. Communications Chemistry, 2019, 2, .	2.0	6
598	Transparent Electrothermal Heaters Based on Vertically-Oriented Graphene Glass Hybrid Materials. Nanomaterials, 2019, 9, 558.	1.9	6
599	Tunable wideband slot antennas based on printable graphene inks. Nanoscale, 2020, 12, 10949-10955.	2.8	6
600	Direct Growth of Graphene over Insulators by Gaseousâ€Promotorâ€Assisted CVD: Progress and Prospects. ChemNanoMat, 2020, 6, 483-492.	1.5	6
601	Tracing the Chemical Oxidation Process of Single-walled Carbon Nanotubes by Silver Nanoparticles. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 1-4.	2.2	6
602	Controllable Growth of MoS ₂ on Au Foils and Its Application in Hydrogen Evolution. Acta Chimica Sinica, 2015, 73, 877.	0.5	6
603	The Rise of Graphene Photonic Crystal Fibers. Advanced Functional Materials, 2022, 32, .	7.8	6
604	Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach. Nano Research, 2022, 15, 9683-9688.	5.8	6
605	New applications of electrochemical techniques. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 65, 285-292.	2.0	5
606	Direct-nanolithography on gelatin film using scanning near-field optical microscopy. Optics Communications, 1998, 146, 21-24.	1.0	5
607	Study on the surface dissociation properties of 6-(10-mercaptodecaoxyl)quinoline self-assembled monolayer on gold by chemical force titration. Materials Science and Engineering C, 1999, 8-9, 191-194.	3.8	5
608	Formation of nanogaps by nanoscale Cu electrodeposition and dissolution. Electrochimica Acta, 2007, 52, 4210-4214.	2.6	5
609	Fabrication of Carbon Nanotube Diode with Atomic Force Microscopy Manipulation. Journal of Physical Chemistry C, 2008, 112, 7544-7546.	1.5	5
610	Trifluoromethylation of graphene. APL Materials, 2014, 2, .	2.2	5
611	Electrical and Photoresponse Properties of Inversion Asymmetric Topological Insulator BiTeCl Nanoplates. ChemNanoMat, 2017, 3, 406-410.	1.5	5
612	Local electrochemical reactivity of single layer graphene deposited on flexible and transparent plastic film using scanning electrochemical microscopy. Carbon, 2018, 130, 566-573.	5.4	5

#	Article	IF	CITATIONS
613	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, 14588-14593.	1.6	5
614	A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. Materials Research Express, 2019, 6, 015607.	0.8	5
615	The Adsorption Kinetics and Characterization of Azobenzene Self-Assembled Monolayers on Gold. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1996, 12, 581-588.	2.2	5
616	Covalent Attachment of Gold Nanoparticles onto the Thiol-terminated Surface through Au-S Bonding. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 961-965.	2.2	5
617	Cold Nanorods Sol Prepared by Electrolysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2000, 16, 956-960.	2.2	5
618	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	11.1	5
619	The right way. Nature, 1991, 351, 193-193.	13.7	4
620	Electrochemical counting of photon number using the assembled monolayer film of azo compound. Sensors and Actuators B: Chemical, 1993, 13, 226-229.	4.0	4
621	The 6-(10-Mercaptodecoxyl)quinoline Self-Assembled Monolayer on Gold: Spectroscopy and Wettability Investigation. Journal of Colloid and Interface Science, 1999, 214, 46-52.	5.0	4
622	Title is missing!. Journal of Materials Science Letters, 2003, 22, 577-579.	0.5	4
623	Laser irradiation induced spectral evolution of the surface-enhanced raman scattering (SERS) of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly. Science in China Series B: Chemistry, 2007, 50, 520-525.	0.8	4
624	Modulation of the Structure and Electronic Density of Molecular Chains on Organic Conductor Surfaces. Journal of Physical Chemistry C, 2008, 112, 1090-1093.	1.5	4
625	Thermochemical Hole Burning on TEA(TCNQ)2Single Crystal at Varied Temperatures in UHV System. Journal of Physical Chemistry C, 2008, 112, 2004-2007.	1.5	4
626	Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). Science in China Series D: Earth Sciences, 2009, 52, 1181-1186.	0.9	4
627	Moiré patterns and step edges on few-layer graphene grown on nickel films. Chinese Physics B, 2014, 23, 116801.	0.7	4
628	Twoâ€Dimensional Materials: A Powerful Platform for Energy Applications. ChemNanoMat, 2017, 3, 338-339.	1.5	4
629	Flexible Photodetectors: Lowâ€₹emperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870271.	11.1	4
630	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie, 2020, 132, 17367-17371.	1.6	4

#	Article	IF	CITATIONS
631	Realization and transport investigation of a single layer-twisted bilayer graphene junction. Carbon, 2020, 163, 105-112.	5.4	4
632	Utilization of Synergistic Effect of Dimensionâ€Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements. Advanced Materials Technologies, 2020, 5, 1901057.	3.0	4
633	Study of Chemical Enhancement in SERS from Au Nanoparticles Assembly. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 485-489.	2.2	4
634	Preparation of Au (core)-Cu (shell) Nanoparticles Assembly by Electrodeposition. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2002, 18, 1062-1067.	2.2	4
635	Multifunctional glass fibre filter modified with vertical graphene for one-step dynamic water filtration and disinfection. Journal of Materials Chemistry A, 2022, 10, 12125-12131.	5.2	4
636	Structural evaluation of 6-(10-mercaptodecoxyl) quinoline self-assembled monolayer on gold by reflectance absorption infrared spectroscopy. Materials Science and Engineering C, 1999, 8-9, 187-190.	3.8	3
637	Irreversible Adsorption and Reduction of <i>p</i> -Nitrothio-Phenol Monolayers on Gold: Electrochemical <i>in Situ</i> Surface Enhanced Raman Spectroscopy. Molecular Crystals and Liquid Crystals, 1999, 337, 241-244.	0.3	3
638	Chemical Force Titration of Conjugated Pyridyl Group-Terminated Self-Assembled Monolayers. Molecular Crystals and Liquid Crystals, 1999, 337, 301-304.	0.3	3
639	Fabrication of F0F1-ATPase Nanostructure on Gold Surface Through Dip-Pen Nanolithography. Journal of Nanoscience and Nanotechnology, 2008, 8, 5753-5756.	0.9	3
640	Electrochemical Synthesis of Highâ€Quality AgTCNQ Nanowires Using Carbon Nanotube Electrodes. Advanced Materials, 2009, 21, 4742-4746.	11.1	3
641	Photocatalytic Engineering of Singleâ€Walled Carbon Nanotubes: From Metalâ€ŧoâ€Semiconductor Conversion to Cutting and Patterning. Small, 2013, 9, 1336-1341.	5.2	3
642	Graphene: Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms (Small 8/2013). Small, 2013, 9, 1359-1359.	5.2	3
643	Advances in electrokinetics revealed in graphene. National Science Review, 2015, 2, 17-18.	4.6	3
644	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	1.1	3
645	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	1.1	3
646	New Approach on the Synthesis of Functionalized Alkanethiols and the Structural Characterization of Their Self-Assembled Monolayers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1997, 13, 515-524.	2.2	3
647	Prepartion of Gold Sols of Large Size Particles. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 966-970.	2.2	3
648	Assembling Gold Nnoparticles on Ultrasmooth Silicon Surface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2000, 16, 202-206.	2.2	3

#	Article	IF	CITATIONS
649	Two-Dimensional Nanostructures of Topological Insulators and Their Devices. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2423-2435.	2.2	3
650	Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	3
651	Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 078101.	0.2	3
652	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Research, 2022, 15, 3775-3780.	5.8	3
653	High-Performance 3D Vertically Oriented Graphene Photodetector Using a Floating Indium Tin Oxide Channel. Sensors, 2022, 22, 959.	2.1	3
654	Flexible Full-Surface Conformal Encapsulation for Each Fiber in Graphene Glass Fiber Fabric against Thermal Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 19889-19896.	4.0	3
655	Porous-structure engineered spacer for high-throughput and rapid growth of high-quality graphene films. Nano Research, 2022, 15, 9741-9746.	5.8	3
656	Developing High Resolution Electrical Probing System Based on Atomic Force Microscopy. Molecular Crystals and Liquid Crystals, 1997, 294, 91-94.	0.3	2
657	Surface-enhanced infrared spectra of azobenzene LB monolayers on silver island film. Thin Solid Films, 1998, 327-329, 287-290.	0.8	2
658	A Direct Experimental Evidence of Collective Electron Resonance Mechanism of Surface Enhanced Infrared Spectroscopy (Seirs). Spectroscopy Letters, 1998, 31, 787-796.	0.5	2
659	AFM Lithography on Langmuir-Blodgett Film of Octadecyltrichlorosilane. Molecular Crystals and Liquid Crystals, 1999, 337, 313-316.	0.3	2
660	Gold Nanoparticles Assembly as the Model System in Studying Mechanisms of Surface Enhanced Raman Scattering. Molecular Crystals and Liquid Crystals, 1999, 337, 237-240.	0.3	2
661	Monolayer Films: Monolayer MoS2Growth on Au Foils and On-Site Domain Boundary Imaging (Adv.) Tj ETQq1 1	0.784314 7.8	rgBT /Overlo
662	Probe of local impurity states by bend resistance measurements in graphene cross junctions. Nanotechnology, 2016, 27, 245204.	1.3	2
663	Graphene/h-BN Heterostructures: Graphene/h-BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications (Adv. Energy Mater. 17/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
664	Semiconductors: Temperatureâ€Triggered Sulfur Vacancy Evolution in Monolayer MoS ₂ /Graphene Heterostructures (Small 40/2017). Small, 2017, 13, .	5.2	2
665	Single Crystals: Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells (Adv. Mater. 26/2017). Advanced Materials, 2017, 29, .	11.1	2
666	Charge Density Waves Driven by Peierls Instability at the Interface of Twoâ€Đimensional Lateral Heterostructures. Small, 2018, 14, e1803040.	5.2	2

#	Article	IF	CITATIONS
667	UV Lightâ€Emitting Diodes: Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer (Adv. Mater. 29/2019). Advanced Materials, 2019, 31, 1970211.	11.1	2
668	Frontispiece: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, .	7.2	2
669	Graphene: Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms (Adv.) Tj ETQq1 1 0.78	4314 rgB1 11.1	[]Overlock
670	Coulomb-dominated oscillations in a graphene quantum Hall Fabry–Pérot interferometer. Chinese Physics B, 2019, 28, 127203.	0.7	2
671	Theoretical calculation boosting the chemical vapor deposition growth of graphene film. APL Materials, 2021, 9, 060906.	2.2	2
672	Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber*. Chinese Physics B, 2021, 30, 118103.	0.7	2
673	Flow characteristics of low pressure chemical vapor deposition in the micro-channel. Physics of Fluids, 2021, 33, 082012.	1.6	2
674	Dependence of the Raman Intensity on the Surface Coverage of Nanoparticles in SERS-ctive Gole Nanoparticulate Films. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2000, 16, 138-144.	2.2	2
675	FullereneTerminated SAMs on Gold(111):Formation and Characterization. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2001, 17, 978-981.	2.2	2
676	Purification and Characterization of SingleWalled Carbon Nanotubes Synthesized by Chemical Vapor Deposition. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2002, 18, 409-413.	2.2	2
677	Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2456-2464.	2.2	2
678	State of the Tunneling Mechanism for Long Range Electron Transfer in Azobenzene Self-assembled Monolayers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 772-777.	2.2	2
679	Observation of Tip-Induced Ordered Molecular Arrangement on Graphite Surfaces by Scanning Tunneling Microscopy. Chemistry Letters, 1990, 19, 17-20.	0.7	1
680	Design of photochromic and electrochemical active azosilane self-assembled monolayer. Science Bulletin, 1997, 42, 1161-1164.	1.7	1
681	Quantum confinement effect in electroluminescent porous silicon. Science in China Series B: Chemistry, 1998, 41, 337-344.	0.8	1
682	Fabrication of PdIr-Coated Conductive Atomic Force Microscope Tip and its Application in Nanofabrication. Molecular Crystals and Liquid Crystals, 1999, 337, 309-312.	0.3	1
683	Investigation of the Oxidation Effect of Porous Silicon During Electroluminescence by In Situ FTIR. Molecular Crystals and Liquid Crystals, 1999, 337, 525-528.	0.3	1
	$\langle title \rangle$ Nanometer-scale fabrication and data storage on charge transfer complex TEA(TCNO)2 single		

citile>Nanometer-scale fabrication and data storage on charge transfer complex TEA(TCNQ)2 single
crystal
crystal

#	Article	IF	CITATIONS
685	Thermochemical hole burning performance of TCNQ-based charge transfer complexes with different electrical conductivities. Nanotechnology, 2008, 19, 235303.	1.3	1
686	Electrochemical identification of metallic and semiconducting single-walled carbon nanotubes using the water gate effect. Chemical Communications, 2009, , 2550.	2.2	1
687	Chemistry at Play in Materials Science: The Centennial Celebration of Chemistry at Peking University. Advanced Materials, 2010, 22, 1428-1429.	11.1	1
688	A flexible and transparent graphene based triboelectric nanogenerator. , 2015, , .		1
689	Transition Metal Dichalcogenides: Morphological Engineering of CVDâ€Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution (Adv. Mater. 29/2016). Advanced Materials, 2016, 28, 6020-6020.	11.1	1
690	Low-field magnetotransport in graphene cavity devices. Nanotechnology, 2018, 29, 205707.	1.3	1
691	Superhydrophilic Graphdiyne: Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity (Adv.) Tj ETQq1 1	. 0.78748 14 r	gB1 /Overloc
692	Nanopatterned Graphene: Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070209.	7.8	1
693	Reorganization of Gold Nanoprticles in Self-Assembled Nanostructures. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2000, 16, 294-298.	2.2	1
694	Preparation of Short Single Walled Carbon Nanotubes by CVDGrowth and by Chemical Oxidation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2001, 17, 687-691.	2.2	1
695	Synthesis of Gold Colloid with Exclusion of Nonspherical Nanoparticles by Seeding Growth. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 211-215.	2.2	1
696	Influence of End Alkyl Chain Length on the Structure of Self-assembled Monolayer of Azobenzene on Gold. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1997, 13, 868-872.	2.2	1
697	Preparation of Atomically Flat Stripped-gold Substrate for Self-assembly. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 609-614.	2.2	1
698	Study of the Formation Process of an Azobenzene Self-assembled Monolayer on Gold Surface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 846-851.	2.2	1
699	Fbrication and Structural Evaluation of Self-assembled Monolayer of Quinoline Derivative on Gold. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 657-661.	2.2	1
700	Fluorescence Quenching Effect of Rhodanmine 6G on Two-Dimensional Bi ₂ Se ₃ Crystals. Acta Chimica Sinica, 2015, 73, 944.	0.5	1
701	Chiral emission induced by the interaction between chiral phonons and localized plasmon. Applied Physics Letters, 2022, 120, .	1.5	1
702	Two-peak electroluminescence of porous silicon in persulphate solution. Applied Physics Letters, 1998, 72, 924-926.	1.5	0

#	Article	IF	CITATIONS
703	Fabrication and Structural Characterization of Azobenzene Monolayer on Silver Island Films By LB and SA Techniques. Molecular Crystals and Liquid Crystals, 1998, 314, 297-302.	0.3	0
704	Spectral Response to Protonation of 4-(4-(4-(Didodecylamino)phenylazo)phenyl)butyric Acid in Its Langmuir–Blodgett Monolayer. Journal of Colloid and Interface Science, 2000, 225, 62-68.	5.0	0
705	Nanostructuring Based on Scanning Probe Microscopy and Bottom Up Assembly for Future Nanoelectronic Devices. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3, .	0.4	0
706	Bimetallic Catalysts for the Efficient Growth of SWNTs on Surfaces ChemInform, 2004, 35, no.	0.1	0
707	The role of CopG mediated DNA bending on the regulation of the σ54-dependent promoters in E. coli. Science Bulletin, 2006, 51, 934-940.	1.7	0
708	Growth of Single-Walled Carbon Nanotubes on Surface with Controlled Structures. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
709	The 100th Anniversary of Chemical Research and Education at Peking University. Chemistry - an Asian Journal, 2010, 5, 964-965.	1.7	0
710	Carbon Nanotubes: Vertically Aligned Single-Walled Carbon Nanotubes by Chemical Assembly - Methodology, Properties, and Applications (Adv. Mater. 13/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
711	Segregated graphene: From controlled growth to photocatalytic paper-cutting electronics. , 2010, , .		0
712	Synthesis of nitrogen-doped graphene by co-segregation method. , 2011, , .		0
713	Properties of photochlorinated graphene. , 2011, , .		0
714	Characteristics of charge density waves on the surfaces of quasi-one-dimensional charge-transfer complex layered organic crystals. Physical Review B, 2011, 83, .	1.1	0
715	New Academicians of the Chinese Academy of Sciences. Angewandte Chemie - International Edition, 2012, 51, 303-304.	7.2	0
716	Lowâ€Dimensional Carbon Materials: A Longstanding Favorite of the Center for Nanochemistry at Peking University. Small, 2013, 9, 1132-1133.	5.2	0
717	Free Radicals: Free Radical Reactions in Two Dimensions: A Case Study on Photochlorination of Graphene (Small 8/2013). Small, 2013, 9, 1387-1387.	5.2	0
718	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
719	Nanomaterials for Energy at Peking University. Advanced Energy Materials, 2016, 6, .	10.2	0
720	Graphene Heterostructures: Recent Advances in Controlling Syntheses and Energy Related Applications of MX2and MX2/Graphene Heterostructures (Adv. Energy Mater. 17/2016). Advanced Energy Materials, 2016, 6, .	10.2	0

#	Article	IF	CITATIONS
721	Fieldâ€Effect Transistors: Edgeâ€Statesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions (Adv. Electron. Mater. 8/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
722	Frontispiz: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, .	1.6	0
723	Lithiumâ€lon Batteries: Highlyâ€Safe and Ultraâ€Stable Allâ€Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications (Adv. Energy Mater. 21/2020). Advanced Energy Materials, 2020, 10, 2070095.	10.2	0
724	Special topic on 2D materials chemistry. APL Materials, 2021, 9, 100401.	2.2	0
725	CVD Synthesis and Diameter Distribution of SingleWalled Carbon Nanotubes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2001, 17, 718-722.	2.2	0
726	The Dependence of Threshold Voltage on Pulse Duration for DPA(TCNQ) ₂ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 561-564.	2.2	0
727	Influence of Decomposition Temperature on the Threshold Voltage for a Series of Charge Transfer Complexes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 565-568.	2.2	0
728	Raman Characterization of a Highly Folded Individual Serpentine (7,5) Single-Walled Carbon Nanotube. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 801-804.	2.2	0
729	Fabricating SERS-Active Substrate by Assembling of Au Nanoparticles. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1996, 12, 961-964.	2.2	0
730	Observation of Nanometer-sized Structures Using a Scanning Near-field Optical Microscope(SNOM). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1997, 13, 669-672.	2.2	0
731	Structure-Dependent Electron Transfer Kinetics of Azobenzene Self-Assembled Monolayers on Gold. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1997, 13, 42-47.	2.2	0
732	Mutual Coupling of Surface Electromagnetic Wave Between Silver Particles: Studies on the Mechanism of the Surface Enhanced Infrared Spectroscopy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 375-379.	2.2	0
733	Preparation and Structural Characterization of Self-assembled Monolayers from a New Series of Mercapto Contained Azobenzene Derivatives. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 198-203.	2.2	0