Alfredo Alexander-Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors. ACS Nano, 2012, 6, 8052-8059.	7.3	198
2	Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nature Communications, 2014, 5, 4482.	5.8	183
3	Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A- <i>Branch</i> -B Diblock Macromonomers. Journal of the American Chemical Society, 2016, 138, 11501-11504.	6.6	146
4	STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature Materials, 2022, 21, 710-720.	13.3	114
5	Multilayer block copolymer meshes by orthogonal self-assembly. Nature Communications, 2016, 7, 10518.	5.8	85
6	Design rules for self-assembled block copolymer patterns using tiled templates. Nature Communications, 2014, 5, 3305.	5.8	78
7	Optimizing Topographical Templates for Directed Self-Assembly of Block Copolymers via Inverse Design Simulations. Nano Letters, 2014, 14, 318-325.	4.5	63
8	Thin Film Morphologies of Bulk-Gyroid Polystyrene- <i>block</i> -polydimethylsiloxane under Solvent Vapor Annealing. Macromolecules, 2014, 47, 6000-6008.	2.2	62
9	Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Communications Biology, 2020, 3, 205.	2.0	57
10	Diblock Copolymer Thin Films:Â A Field-Theoretic Simulation Study. Macromolecules, 2007, 40, 4075-4087.	2.2	55
11	Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6866-6874.	3.3	54
12	Inverse Design of Topographical Templates for Directed Self-Assembly of Block Copolymers. ACS Macro Letters, 2013, 2, 251-255.	2.3	49
13	Internal Friction and Nonequilibrium Unfolding of Polymeric Globules. Physical Review Letters, 2009, 103, 028102.	2.9	42
14	Globuleâ^'Stretch Transitions of Collapsed Polymers in Elongational Flow Fields. Macromolecules, 2010, 43, 3532-3541.	2.2	41
15	Enhancing the Potential of Block Copolymer Lithography with Polymer Self-Consistent Field Theory Simulations. Macromolecules, 2010, 43, 8290-8295.	2.2	38
16	Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proceedings of the United States of America, 2020, 117, 18470-18476.	3.3	38
17	Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics, 2013, 7, 64113.	1.2	35
18	Dictating Nanoparticle Assembly via Systems-Level Control of Molecular Multivalency. Journal of the American Chemical Society, 2019, 141, 14624-14632.	6.6	34

#	Article	IF	CITATIONS
19	Machine Learning Predictions of Block Copolymer Selfâ€Assembly. Advanced Materials, 2020, 32, e2005713.	11.1	34
20	Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study. PLoS ONE, 2019, 14, e0209492.	1.1	31
21	Field-theoretic simulations of polymer solutions: Finite-size and discretization effects. Journal of Chemical Physics, 2005, 122, 014904.	1.2	30
22	Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4652-4657.	3.3	26
23	Nanoscale spirals by directed self-assembly. Nano Futures, 2017, 1, 015001.	1.0	26
24	Imparting Superhydrophobicity with a Hierarchical Block Copolymer Coating. Small, 2020, 16, e1905509.	5.2	25
25	Perpendicular Block Copolymer Microdomains in High Aspect Ratio Templates. Nano Letters, 2015, 15, 6901-6908.	4.5	24
26	Behavior of Protein-Inspired Synthetic Random Heteropolymers. Macromolecules, 2020, 53, 9187-9199.	2.2	24
27	Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1207-1215.	1.4	23
28	Double-Layer Morphologies from a Silicon-Containing ABA Triblock Copolymer. ACS Nano, 2018, 12, 6193-6202.	7.3	23
29	3D TEM Tomography of Templated Bilayer Films of Block Copolymers. Advanced Functional Materials, 2014, 24, 7689-7697.	7.8	22
30	Computational Insights into the Binding of Monolayer-Capped Gold Nanoparticles onto Amyloid-β Fibrils. ACS Chemical Neuroscience, 2020, 11, 3153-3160.	1.7	22
31	Dissipative particle dynamics for directed self-assembly of block copolymers. Journal of Chemical Physics, 2019, 151, 154905.	1.2	21
32	Inverting the design path for self-assembled block copolymers. Molecular Systems Design and Engineering, 2017, 2, 539-548.	1.7	20
33	Emergent symmetries in block copolymer epitaxy. Nature Communications, 2019, 10, 2974.	5.8	19
34	Structure and dynamics of blood-clotting-inspired polymer-colloid composites. Soft Matter, 2013, 9, 10381.	1.2	16
35	Grafting Charged Species to Membrane-Embedded Scaffolds Dramatically Increases the Rate of Bilayer Flipping. ACS Central Science, 2017, 3, 186-195.	5.3	16
36	Computational Insights into Avidity of Polymeric Multivalent Binders. Biophysical Journal, 2019, 117, 892-902.	0.2	16

#	Article	IF	CITATIONS
37	Theory of Tethered Polymers in Shear Flow: The Strong Stretching Limit. Macromolecules, 2011, 44, 9020-9028.	2.2	15
38	Artificial Tribotactic Microscopic Walkers: Walking Based on Friction Gradients. Physical Review Letters, 2014, 113, 178101.	2.9	15
39	Single-Nanometer Changes in Nanopore Geometry Influence Curvature, Local Properties, and Protein Localization in Membrane Simulations. Nano Letters, 2019, 19, 4770-4778.	4.5	14
40	Self-Directed Self-Assembly of 3D Tailored Block Copolymer Nanostructures. ACS Nano, 2020, 14, 15182-15192.	7.3	14
41	Effect of Molecular Architecture on the Self-Assembly of Bottlebrush Copolymers. Journal of Physical Chemistry B, 2020, 124, 11519-11529.	1.2	14
42	Controlling polyelectrolyte equilibria and structure via counterion–solvent interactions. Soft Matter, 2009, 5, 2198.	1.2	11
43	Influence of Binding Site Affinity Patterns on Binding of Multivalent Polymers. ACS Omega, 2020, 5, 10774-10781.	1.6	10
44	Forced Unfolding of Protein-Inspired Single-Chain Random Heteropolymers. Macromolecules, 2022, 55, 1295-1309.	2.2	10
45	Phase Behavior of Disk–Coil Macromolecules. Macromolecules, 2011, 44, 7016-7025.	2.2	9
46	Coarse-Grained Simulations Suggest the Epsin N-Terminal Homology Domain Can Sense Membrane Curvature without Its Terminal Amphipathic Helix. ACS Nano, 2020, 14, 16919-16928.	7.3	9
47	Diversifying Composition Leads to Hierarchical Composites with Design Flexibility and Structural Fidelity. ACS Nano, 2021, 15, 14095-14104.	7.3	9
48	Metallic Nanomeshes Fabricated by Multimechanism Directed Self-Assembly. ACS Nano, 2021, 15, 16266-16276.	7.3	9
49	Directed self-assembly of a two-state block copolymer system. Nano Convergence, 2018, 5, 25.	6.3	7
50	Polymer Stiffness Regulates Multivalent Binding and Liquid-Liquid Phase Separation. Biophysical Journal, 2020, 119, 1849-1864.	0.2	7
51	Micromechanical model for isolated polymer-colloid clusters under tension. Physical Review E, 2016, 94, 042501.	0.8	6
52	Unfolding of collapsed polymers in shear flow: Effects of colloid banding structures in confining channels. Physical Review E, 2014, 89, 032602.	0.8	5
53	Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF. BMC Molecular and Cell Biology, 2020, 21, 64.	1.0	5
54	Coarse-Grained Simulations Suggest Potential Competing Roles of Phosphoinositides and Amphipathic Helix Structures in Membrane Curvature Sensing of the AP180 N-Terminal Homology Domain. Journal of Physical Chemistry B, 2022, 126, 2789-2797.	1.2	5

#	Article	IF	CITATIONS
55	Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites. ACS Nano, 2022, 16, 9368-9377.	7.3	5
56	Random copolymers that protect proteins. Science, 2018, 359, 1216-1217.	6.0	4
57	Solvent Remodeling in Singleâ€Chain Amphiphilic Heteropolymer Systems. Macromolecular Rapid Communications, 2022, 43, e2200142.	2.0	4
58	Simulations of Polymer Solutions: A Field-Theoretic Approach. ACS Symposium Series, 2003, , 279-289.	0.5	3
59	Controlled Water Uptake in Fuel Cell Membranes with Dual Chemistry Confinement. Chemistry of Materials, 2021, 33, 6662-6670.	3.2	3
60	Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation. PLoS ONE, 2021, 16, e0245405.	1.1	3
61	Topographic Templating: Rectangular Symmetry Morphologies in a Topographically Templated Block Copolymer (Adv. Mater. 31/2012). Advanced Materials, 2012, 24, 4343-4343.	11.1	1
62	Selfâ€Assembly: Sacrificialâ€Post Templating Method for Block Copolymer Selfâ€Assembly (Small 3/2014). Small, 2014, 10, 418-418.	5.2	0