
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2649810/publications.pdf Version: 2024-02-01

SHENCOA LILL

#	Article	IF	CITATIONS
1	Nanozymes as efficient tools for catalytic therapeutics. View, 2022, 3, 20200147.	5.3	23
2	Giant nanotubes equipped with horseradish peroxidase active sites: a powerful nanozyme co-assembled from supramolecular amphiphiles for glucose detection. Chemical Engineering Journal, 2022, 429, 132592.	12.7	8
3	<i>semiaza</i> -Bambusurils are anion-specific transmembrane transporters. Chemical Communications, 2022, 58, 3150-3153.	4.1	3
4	Supramolecularly regulated artificial transmembrane signal transduction for 'ON/OFF'-switchable enzyme catalysis. Chemical Communications, 2022, 58, 5725-5728.	4.1	11
5	Morphological Selectivity of a Protein Self-Assembly System with a Repertoire of Diverse Interaction Modes. ACS Macro Letters, 2022, 11, 675-679.	4.8	1
6	"On/Off―Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS Nano, 2022, 16, 8012-8021.	14.6	23
7	Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry B, 2022, 10, 6590-6606.	5.8	23
8	Single-Molecule Observation of Selenoenzyme Intermediates in a Semisynthetic Seleno-α-Hemolysin Nanoreactor. Analytical Chemistry, 2022, 94, 8433-8440.	6.5	6
9	Bioinspired artificial nanochannels: construction and application. Materials Chemistry Frontiers, 2021, 5, 1610-1631.	5.9	18
10	Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Delivery, 2021, 28, 357-371.	5.7	27
11	Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 5069-5075.	5.8	22
12	Hierarchical protein self-assembly into dynamically controlled 2D nanoarrays <i>via</i> host–guest chemistry. Chemical Communications, 2021, 57, 10620-10623.	4.1	6
13	Difunctionalized pillar[5]arene-based polymer nanosheets for photodynamic therapy of <i>Staphylococcus aureus</i> infection. Journal of Materials Chemistry B, 2021, 9, 2066-2072.	5.8	4
14	Temperature and pH Responsive Lightâ€Harvesting System Based on AlEâ€Active Microgel for Cell Imaging. Macromolecular Rapid Communications, 2021, 42, e2000716.	3.9	17
15	Supramolecular Polymer Nanocomposites for Biomedical Applications. Polymers, 2021, 13, 513.	4.5	17
16	Construction of Ultralarge Two-Dimensional Fluorescent Protein Arrays via a Reengineered Rhodamine B-Based Molecular Tool. ACS Macro Letters, 2021, 10, 307-311.	4.8	4
17	Design of Cyclodextrin-Based Functional Systems for Biomedical Applications. Frontiers in Chemistry, 2021, 9, 635507.	3.6	30
18	Dynamically Tunable Ultrathin Protein Membranes for Controlled Molecular Separation. ACS Applied Materials & Interfaces, 2021, 13, 12359-12365.	8.0	4

#	Article	IF	CITATIONS
19	Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules, 2021, 26, 3310.	3.8	9
20	Multi-Enzyme-Synergetic ultrathin protein nanosheets display high efficient and switch on/off antibacterial activities. Chemical Engineering Journal, 2021, 416, 129082.	12.7	14
21	Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation. Journal of Hazardous Materials, 2021, 414, 125528.	12.4	87
22	Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS Applied Bio Materials, 2021, 4, 5961-5974.	4.6	6
23	Comparing dark- and photo-Fenton-like degradation of emerging pollutant over photo-switchable Bi2WO6/CuFe2O4: Investigation on dominant reactive oxidation species. Journal of Environmental Sciences, 2021, 106, 147-160.	6.1	16
24	Biomimetic Cascade Polymer Nanoreactors for Starvation and Photodynamic Cancer Therapy. Molecules, 2021, 26, 5609.	3.8	9
25	Highly sensitive detection of paraquat with pillar[5]arenes as an aptamer in an α-hemolysin nanopore. Materials Chemistry Frontiers, 2021, 5, 7032-7040.	5.9	4
26	Unimolecular Helix-Based Transmembrane Nanochannel with a Smallest Luminal Cavity of 1 Ã Expressing High Proton Selectivity and Transport Activity. Nano Letters, 2021, 21, 10462-10468.	9.1	22
27	Biocompatible Diselenide-Containing Protein Hydrogels with Effective Visible-Light-Initiated Self-Healing Properties. Polymers, 2021, 13, 4360.	4.5	1
28	Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chemical Communications, 2020, 56, 149-152.	4.1	15
29	Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt. Materials Science and Engineering C, 2020, 108, 110383.	7.3	31
30	Covalently assembled ultrathin polymer nanocapsules to mimic a multienzyme-cascade antioxidative system. Materials Chemistry Frontiers, 2020, 4, 2797-2804.	5.9	2
31	Reversible Switch of a Selenium-Containing Antioxidant System Regulated by Protein Assembly. ACS Catalysis, 2020, 10, 9735-9740.	11.2	11
32	Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles. Biomacromolecules, 2020, 21, 4212-4219.	5.4	12
33	Reversible Ligandâ€Gated Ion Channel via Interconversion between Hollow Single Helix and Intertwined Double Helix. Angewandte Chemie, 2020, 132, 13704-13709.	2.0	7
34	Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection. Science China Chemistry, 2020, 63, 497-503.	8.2	20
35	Graphene oxide-based colorimetric detection of organophosphorus pesticides <i>via</i> a multi-enzyme cascade reaction. Nanoscale, 2020, 12, 5829-5833.	5.6	49
36	Morphological Transformation between Orthogonal Dynamic Covalent Selfâ€Assembly of Imineâ€Boroxine Hybrid Polymer Nanocapsules and Thin Films via Linker Exchange. Macromolecular Rapid Communications, 2020, 41, 1900586.	3.9	4

#	Article	IF	CITATIONS
37	Reversible Ligandâ€Gated Ion Channel via Interconversion between Hollow Single Helix and Intertwined Double Helix. Angewandte Chemie - International Edition, 2020, 59, 13602-13607.	13.8	19
38	Hierarchical Self-Assembly of Proteins Through Rationally Designed Supramolecular Interfaces. Frontiers in Bioengineering and Biotechnology, 2020, 8, 295.	4.1	28
39	Regulation of the Switchable Luminescence of Tridentate Platinum(II) Complexes by Photoisomerization. Frontiers in Chemistry, 2020, 8, 622256.	3.6	2
40	Rational Design and Biological Application of Antioxidant Nanozymes. Frontiers in Chemistry, 2020, 8, 831.	3.6	31
41	Protein Self-Assembly: Strategies and Applications. , 2020, , 915-955.		2
42	Engineering protein polymers of ultrahigh molecular weight <i>via</i> supramolecular polymerization: towards mimicking the giant muscle protein titin. Chemical Science, 2019, 10, 9277-9284.	7.4	12
43	Biomimetic Pulsating Vesicles with Both pH-Tunable Membrane Permeability and Light-Triggered Disassembly–Re-assembly Behaviors Prepared by Supra-Amphiphilic Helices. ACS Applied Materials & Interfaces, 2019, 11, 30566-30574.	8.0	15
44	Giant Proteinosomes As Scaffolds for Light Harvesting. ACS Macro Letters, 2019, 8, 1128-1132.	4.8	14
45	Protein Self-Assembly: Strategies and Applications. , 2019, , 1-41.		1
46	Construction of a reconfigurable DNA nanocage for encapsulating a TMV disk. Chemical Communications, 2019, 55, 8951-8954.	4.1	6
47	Diselenium-containing ultrathin polymer nanocapsules for highly efficient targeted drug delivery and combined anticancer effect. Journal of Materials Chemistry B, 2019, 7, 4927-4932.	5.8	22
48	Injectable and fast self-healing protein hydrogels. Soft Matter, 2019, 15, 7583-7589.	2.7	47
49	Bioinspired hierarchically hairy particles for robust superhydrophobic coatings <i>via</i> a droplet dynamic template method. Polymer Chemistry, 2019, 10, 331-335.	3.9	26
50	Supramolecular nanochannels self-assembled by helical pyridine–pyridazine oligomers. Chemical Communications, 2019, 55, 2509-2512.	4.1	12
51	A remote optically controlled hydrolase model based on supramolecular assembly and disassembly of its enzyme-like active site. Nanoscale, 2019, 11, 3521-3526.	5.6	16
52	Self-constructing giant vesicles for mimicking biomembrane fusion and acting as enzymatic catalysis microreactors. Journal of Materials Chemistry B, 2019, 7, 1226-1229.	5.8	3
53	Biomimetic Octopus-like Particles for Ultraspecific Capture and Detection of Pathogens. ACS Applied Materials & Interfaces, 2019, 11, 22164-22170.	8.0	11
54	Supramolecular polymer nanocapsules by enzymatic covalent condensation: biocompatible and biodegradable drug-delivery systems for chemo-photothermal anticancer therapy. Polymer Chemistry, 2019, 10, 3566-3570.	3.9	10

#	Article	IF	CITATIONS
55	Computational Design and Study of Artificial Selenoenzyme with Controllable Activity Based on an Allosteric Protein Scaffold. Chemistry - A European Journal, 2019, 25, 10350-10358.	3.3	7
56	Magnetic Multiarm Scaffold for the One-Step Purification of Epitope-Specific Neutralizing Antibodies. Analytical Chemistry, 2019, 91, 6172-6179.	6.5	2
57	Light-triggered reversible disassembly of stimuli-responsive coordination metallosupramolecular Pd ₂ L ₄ cages mediated by azobenzene-containing ligands. Materials Chemistry Frontiers, 2019, 3, 1238-1243.	5.9	28
58	Interfacial Assembly of Signal Amplified Multienzymes and Biorecognized Antibody into Proteinosome for an Ultrasensitive Immunoassay. Small, 2019, 15, e1900350.	10.0	32
59	Template-Free Construction of Highly Ordered Monolayered Fluorescent Protein Nanosheets: A Bioinspired Artificial Light-Harvesting System. ACS Nano, 2019, 13, 1861-1869.	14.6	37
60	Constructing Artificial Lightâ€Harvesting Systems by Covalent Alignment of Aggregationâ€Induced Emission Molecules. Macromolecular Rapid Communications, 2019, 40, 1800892.	3.9	13
61	Decorating protein hydrogels reversibly enables dynamic presentation and release of functional protein ligands on protein hydrogels. Chemical Communications, 2019, 55, 12703-12706.	4.1	9
62	Cucurbit[8]uril-based supramolecular polymer nanocapsules as an effective siRNA delivery platform for gene therapy. Polymer Chemistry, 2019, 10, 5659-5664.	3.9	10
63	Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect. Chemical Communications, 2019, 55, 13820-13823.	4.1	15
64	Giant "Breathing―Proteinosomes with Jellyfish-like Property. ACS Applied Materials & Interfaces, 2019, 11, 47619-47624.	8.0	14
65	Covalently assembled polymer nanocapsules: a novel scaffold for light-harvesting. Polymer Chemistry, 2018, 9, 1160-1163.	3.9	12
66	Design of artificial enzymes by supramolecular strategies. Current Opinion in Structural Biology, 2018, 51, 19-27.	5.7	49
67	Reductive-Responsive, Single-Molecular-Layer Polymer Nanocapsules Prepared by Lateral-Functionalized Pillar[5]arenes for Targeting Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 14281-14286.	8.0	47
68	A Switchable Helical Capsule for Encapsulation and Release of Potassium Ion. Journal of Organic Chemistry, 2018, 83, 1898-1902.	3.2	18
69	Protein Selfâ€Assembly Driven by De Novo Coiled Coils and Constructing Ag Nanoparticleâ€Protein Assembly Composite with High Catalytic Activity. Particle and Particle Systems Characterization, 2018, 35, 1700436.	2.3	4
70	Cucurbituril As A Versatile Tool to Tune the Functions of Proteins. Israel Journal of Chemistry, 2018, 58, 286-295.	2.3	22
71	Cucurbit[8]uril-Based Giant Supramolecular Vesicles: Highly Stable, Versatile Carriers for Photoresponsive and Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4603-4613.	8.0	75
72	Photocontrolled protein assembly for constructing programmed two-dimensional nanomaterials. Journal of Materials Chemistry B, 2018, 6, 75-83.	5.8	12

#	Article	IF	CITATIONS
73	An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. Nanoscale, 2018, 10, 22155-22160.	5.6	28
74	Construction of self-assembled vesicle nanoenzyme using cucurbit[8]uril-based supra-amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 95-102.	4.7	5
75	Construction of Artificial Enzymes on aÂVirus Surface. Methods in Molecular Biology, 2018, 1776, 437-454.	0.9	Ο
76	A folding-directed catalytic microenvironment in helical dynamic covalent polymers formed by spontaneous configuration control. Polymer Chemistry, 2017, 8, 1294-1297.	3.9	7
77	Construction of ATP-Switched Allosteric Antioxidant Selenoenzyme. ACS Catalysis, 2017, 7, 1875-1879.	11.2	19
78	Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid). ACS Applied Materials & Interfaces, 2017, 9, 14429-14436.	8.0	51
79	Construction of protein assemblies by host–guest interactions with cucurbiturils. Organic and Biomolecular Chemistry, 2017, 15, 4272-4281.	2.8	43
80	Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today, 2017, 14, 16-41.	11.9	128
81	Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel. Biomacromolecules, 2017, 18, 1885-1892.	5.4	53
82	Semithiobambus[6]uril is a transmembrane anion transporter. Chemical Communications, 2017, 53, 7557-7560.	4.1	32
83	A highly controllable protein self-assembly system with morphological versatility induced by reengineered host–guest interactions. Nanoscale, 2017, 9, 7991-7997.	5.6	29
84	Construction of Redox Responsive Vesicles Based on a Supraâ€Amphiphile for Enzyme Confinement. Chinese Journal of Chemistry, 2017, 35, 871-875.	4.9	4
85	Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts. ACS Nano, 2017, 11, 938-945.	14.6	71
86	Protein Self-Assembly: From Programming Arrays to Bioinspired Materials. ACS Symposium Series, 2017, , 129-148.	0.5	1
87	Construction of Smart Glutathione S-Transferase via Remote Optically Controlled Supramolecular Switches. ACS Catalysis, 2017, 7, 6979-6983.	11.2	12
88	Laterally functionalized pillar[5]arene: a new building block for covalent self-assembly. Chemical Communications, 2017, 53, 9024-9027.	4.1	52
89	Highly Selective Artificial Potassium Ion Channels Constructed from Pore ontaining Helical Oligomers. Angewandte Chemie, 2017, 129, 12842-12845.	2.0	33
90	Highly Selective Artificial Potassium Ion Channels Constructed from Poreâ€Containing Helical Oligomers. Angewandte Chemie - International Edition, 2017, 56, 12668-12671.	13.8	68

#	Article	IF	CITATIONS
91	Supramolecular Protein Assemblies Based on DNA Templates. Journal of Physical Chemistry Letters, 2017, 8, 3970-3979.	4.6	15
92	Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chemical Communications, 2017, 53, 13375-13378.	4.1	62
93	Bio-inspired reversible underwater adhesive. Nature Communications, 2017, 8, 2218.	12.8	353
94	Dynamic protein self-assembly driven by host–guest chemistry and the folding–unfolding feature of a mutually exclusive protein. Chemical Communications, 2017, 53, 10532-10535.	4.1	22
95	Protein self-assembly via supramolecular strategies. Chemical Society Reviews, 2016, 45, 2756-2767.	38.1	254
96	Photocontrolled reversible morphology conversion of protein nanowires mediated by an azobenzene-cored dendrimer. Chemical Communications, 2016, 52, 6001-6004.	4.1	22
97	Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules. Angewandte Chemie - International Edition, 2016, 55, 9723-9727.	13.8	78
98	Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews, 2016, 116, 13571-13632.	47.7	452
99	Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules. Angewandte Chemie, 2016, 128, 9875-9879.	2.0	20
100	Protein self-assembly: technology and strategy. Science China Chemistry, 2016, 59, 1531-1540.	8.2	11
101	Catalysts Encapsulated in Molecular Machines. ChemPhysChem, 2016, 17, 1752-1758.	2.1	17
102	Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supra-amphiphiles. Soft Matter, 2016, 12, 1192-1199.	2.7	24
103	Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport. Nanoscale, 2016, 8, 2960-2966.	5.6	15
104	An ion signal responsive dynamic protein nano-spring constructed by high ordered host–guest recognition. Chemical Communications, 2016, 52, 2924-2927.	4.1	34
105	Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System. ACS Nano, 2016, 10, 421-428.	14.6	68
106	Construction of supramolecular polymer by enzyme-triggered covalent condensation of CB[8]-FGG-based supramonomer. Chemical Communications, 2016, 52, 2083-2086.	4.1	20
107	The construction of functional protein nanotubes by small molecule-induced self-assembly of cricoid proteins. Chemical Communications, 2016, 52, 4092-4095.	4.1	33

108 Environment Responsive Hydrogels. , 2016, , 251-280.

#	Article	IF	CITATIONS
109	Powerful Bipodal Anion Transporters Based on Scaffolds That Contain Different Chalcogens. European Journal of Organic Chemistry, 2015, 2015, 6458-6465.	2.4	15
110	Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation. Chemical Communications, 2015, 51, 9987-9990.	4.1	27
111	Design of Aromatic Helical Polymers for STM Visualization: Imaging of Single and Double Helices with a Pattern of π–π Stacking. Angewandte Chemie, 2015, 127, 3140-3144.	2.0	19
112	Light-controlled switching of the self-assembly of ill-defined amphiphilic SP-PAMAM. RSC Advances, 2015, 5, 101894-101899.	3.6	4
113	Construction of giant branched nanotubes from cyclodextrin-based supramolecular amphiphiles. Chemical Communications, 2015, 51, 6512-6514.	4.1	8
114	Self-Assembly of Cricoid Proteins Induced by "Soft Nanoparticles― An Approach To Design Multienzyme-Cooperative Antioxidative Systems. ACS Nano, 2015, 9, 5461-5469.	14.6	98
115	A Photoâ€responsive Catalytic Vesicle with GPx Activity. Chinese Journal of Chemistry, 2014, 32, 37-43.	4.9	5
116	Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis. ACS Nano, 2014, 8, 11715-11723.	14.6	190
117	A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity. Soft Matter, 2014, 10, 3374.	2.7	23
118	A smart artificial glutathione peroxidase with temperature responsive activity constructed by host–guest interaction and self-assembly. RSC Advances, 2014, 4, 25040-25050.	3.6	9
119	Temperature-Driven Switching of the Catalytic Activity of Artificial Glutathione Peroxidase by the Shape Transition between the Nanotubes and Vesicle-like Structures. Langmuir, 2014, 30, 4013-4018.	3.5	41
120	Quantum-Dot-Induced Self-Assembly of Cricoid Protein for Light Harvesting. ACS Nano, 2014, 8, 3743-3751.	14.6	83
121	Spontaneous formation of organic helical architectures through dynamic covalent chemistry. Chemical Communications, 2014, 50, 14744-14747.	4.1	5
122	Highly Ordered Protein Nanorings Designed by Accurate Control of Glutathione S-Transferase Self-Assembly. Journal of the American Chemical Society, 2013, 135, 10966-10969.	13.7	132
123	Understanding enzyme catalysis by means of supramolecular artificial enzymes. Science China Chemistry, 2013, 56, 1067-1074.	8.2	5
124	Dual stimuli-responsive supramolecular pseudo-polyrotaxane hydrogels. Soft Matter, 2013, 9, 4635.	2.7	40
125	Construction of Protein Nanowires through Cucurbit[8]urilâ€based Highly Specific Host–Guest Interactions: An Approach to the Assembly of Functional Proteins. Angewandte Chemie - International Edition, 2013, 52, 5590-5593.	13.8	145
126	A Dual Enzyme Microgel with High Antioxidant Ability Based on Engineered Selenoâ€Ferritin and Artificial Superoxide Dismutase. Macromolecular Bioscience, 2013, 13, 808-816.	4.1	14

#	Article	IF	CITATIONS
127	Cucurbit[<i>7</i>]urilâ€Based Vesicles Formed by Selfâ€assembly of Supramolecular Amphiphiles. Chinese Journal of Chemistry, 2012, 30, 2085-2090.	4.9	11
128	Artificial enzymes based on supramolecular scaffolds. Chemical Society Reviews, 2012, 41, 7890.	38.1	345
129	Self-assembly of glutathione S-transferase into nanowires. Nanoscale, 2012, 4, 5847.	5.6	57
130	Silver mineralization on self-assembled peptide nanofibers for long term antimicrobial effect. Journal of Materials Chemistry, 2012, 22, 2575-2581.	6.7	70
131	Construction of GPx Active Centers on Natural Protein Nanodisk/Nanotube: A New Way to Develop Artificial Nanoenzyme. ACS Nano, 2012, 6, 8692-8701.	14.6	92
132	Self-assembled nanostructures from C60-containing supramolecular complex: its stimuli-responsive reversible transition and biological antioxidative capacity. New Journal of Chemistry, 2011, 35, 2632.	2.8	6
133	Preparation of GSH-functionalized porous dextran for the selective binding of GST by high internal phase emulsion (HIPE) polymerization. Journal of Materials Chemistry, 2011, 21, 16147.	6.7	16
134	Artificial selenoenzymes: Designed and redesigned. Chemical Society Reviews, 2011, 40, 1171-1184.	38.1	167
135	Construction of a smart glutathione peroxidase mimic with temperature responsive activity based on block copolymer. Soft Matter, 2011, 7, 2521.	2.7	23
136	Construction of a Hyperbranched Supramolecular Polymer as a Bifunctional Antioxidative Enzyme Model. Macromolecular Bioscience, 2011, 11, 821-827.	4.1	22
137	A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter, 2010, 6, 5342.	2.7	42
138	Photoregulating Catalytic Activity of Cyclodextrin-Based Artificial Glutathione Peroxidase by Charged Azobenzene. Catalysis Letters, 2010, 138, 62-67.	2.6	12
139	Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter, 2009, 5, 1905.	2.7	61
140	1H NMR Study on the Inclusion Complex of Glutathione with a Glutathione Peroxidase Mimic, 2,2′-ditelluro-bridged β-cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 171-175.	1.6	8
141	A Glutathione Peroxidase Mimic 6,6′-Ditellurobis (6-Deoxy-β-Cyclodextrin) with High Substrate Specificity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 179-182.	1.6	13
142	Dendritic tellurides acting as antioxidants. Science Bulletin, 2006, 51, 2315-2321.	1.7	10
143	Tellurium-Based Polymeric Surfactants as a Novel Seleno-Enzyme Model with High Activity. Macromolecular Rapid Communications, 2006, 27, 2101-2106.	3.9	30
144	Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. Journal of the American Chemical Society, 2004, 126, 10556-10557.	13.7	169

#	Article	IF	CITATIONS
145	A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Letters, 2001, 507, 377-380.	2.8	46
146	A Novel Selenocystine-β-Cyclodextrin Conjugate That Acts as a Glutathione Peroxidase Mimic. Bioconjugate Chemistry, 2000, 11, 682-687.	3.6	39
147	Cyclodextrin-catalyzed oxidation of glutathione in solution and in an ion trap. Rapid Communications in Mass Spectrometry, 1999, 13, 950-953.	1.5	10
148	Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials. Chemical Research in Chinese Universities, 0, , 1.	2.6	0