
Richard D Rainbow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2649353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathophysiological insights into atrial fibrillation: revisiting the electrophysiological substrate, anatomical substrate, and possible insights from proteomics. Cardiovascular Research, 2021, 117, e41-e45.	1.8	3
2	Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data. Communications Biology, 2020, 3, 3.	2.0	27
3	Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Biochemical Journal, 2020, 477, 671-689.	1.7	2
4	A novel form of glycolytic metabolismâ€dependent cardioprotection revealed by PKCα and β inhibition. Journal of Physiology, 2019, 597, 4481-4501.	1.3	5
5	Small-Molecule G Protein–Coupled Receptor Kinase Inhibitors Attenuate G Protein–Coupled Receptor Kinase 2–Mediated Desensitization of Vasoconstrictor-Induced Arterial Contractions. Molecular Pharmacology, 2018, 94, 1079-1091.	1.0	12
6	Distinct and complementary roles for α and β isoenzymes of PKC in mediating vasoconstrictor responses to acutely elevated glucose. British Journal of Pharmacology, 2016, 173, 870-887.	2.7	19
7	Detachment of surface membrane invagination systems by cationic amphiphilic drugs. Scientific Reports, 2016, 6, 18536.	1.6	13
8	Response to Qian and Colvin: Zinc-mediated Regulation of the Cardiac Ryanodine Receptor Occurs via Multiple Binding Sites. Journal of Biological Chemistry, 2016, 291, 4267.	1.6	1
9	Ca ²⁺ dependent but PKC independent signalling mediates UTP induced contraction of rat mesenteric arteries. Journal of Smooth Muscle Research, 2015, 51, 58-69.	0.7	1
10	Intracellular Zinc Modulates Cardiac Ryanodine Receptor-mediated Calcium Release. Journal of Biological Chemistry, 2015, 290, 17599-17610.	1.6	64
11	Defining the roles of arrestin2 and arrestin3 in vasoconstrictor receptor desensitization in hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C179-C189.	2.1	8
12	Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection. Journal of Molecular and Cellular Cardiology, 2015, 79, 42-53.	0.9	10
13	Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge. Biochemical Journal, 2014, 464, 343-354.	1.7	13
14	PKC-mediated toxicity of elevated glucose concentration on cardiomyocyte function. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H587-H597.	1.5	11
15	A Single Point Mutation in the Distal C-Terminal of the Pore Forming Kir6.1 Subunit Modifies ATP-Sensitive Potassium (KATP) Channel Regulation. Biophysical Journal, 2013, 104, 130a-131a.	0.2	0
16	A Cytoplasmic Inter-Subunit Salt Bridge, Kir6.1R347/SUR2AE1318, Contributes to Allosteric Information Transmission in Kir6.14/SUR2A4 Channel Complexes. Biophysical Journal, 2013, 104, 131a.	0.2	0
17	Combined Calcium Fluorescence Recording with Ionic Currents in Contractile Cells. Methods in Molecular Biology, 2013, 937, 149-160.	0.4	0
18	Kir6.2 limits Ca ²⁺ overload and mitochondrial oscillations of ventricular myocytes in response to metabolic stress. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1508-H1518.	1.5	18

RICHARD D RAINBOW

#	Article	IF	CITATIONS
19	Sulphonylurea Receptors Regulate Kir6.2 Subunits Allosterically via a Salt Bridge in Cardiac KATP Channels. Biophysical Journal, 2011, 100, 432a.	0.2	0
20	Protein kinase C–independent inhibition of arterial smooth muscle K ⁺ channels by a diacylglycerol analogue. British Journal of Pharmacology, 2011, 163, 845-856.	2.7	9
21	Principal role of adenylyl cyclase 6 in K+ channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovascular Research, 2011, 91, 694-702.	1.8	34
22	Endothelin-I and angiotensin II inhibit arterial voltage-gated K+ channels through different protein kinase C isoenzymes. Cardiovascular Research, 2009, 83, 493-500.	1.8	46
23	The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle. Cell Calcium, 2009, 46, 313-322.	1.1	25
24	Comparison of IP3R and RyR Expression and Ca2+ Release Characteristics in Isolated Cardiac Nuclei. Biophysical Journal, 2009, 96, 97a.	0.2	0
25	IP3R-mediated Ca2+ release is modulated by anandamide in isolated cardiac nuclei. Journal of Molecular and Cellular Cardiology, 2008, 45, 804-811.	0.9	24
26	Ins(1,4,5)P3 receptor regulation during â€~quantal' Ca2+ release in smooth muscle. Trends in Pharmacological Sciences, 2007, 28, 271-279.	4.0	9
27	Ion channels in smooth muscle: Regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium, 2007, 42, 447-466.	1.1	54
28	Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels. Biochemical Journal, 2004, 379, 173-181.	1.7	17
29	The Origin of Calcium Overload in Rat Cardiac Myocytes Following Metabolic Inhibition With 2,4-Dinitrophenol. Journal of Molecular and Cellular Cardiology, 2002, 34, 859-871.	0.9	17