Andres Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>FurA</scp> is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in <i><scp>A</scp>nabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology, 2012, 14, 3175-3187.	1.8	54
2	Overexpression of FurA in Anabaena sp. PCC 7120 Reveals New Targets for This Regulator Involved in Photosynthesis, Iron Uptake and Cellular Morphology. Plant and Cell Physiology, 2010, 51, 1900-1914.	1.5	42
3	The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Research, 2014, 42, 4833-4846.	6.5	41
4	Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. Journal of Proteomics, 2011, 74, 660-671.	1.2	40
5	2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Letters, 2011, 585, 3921-3926.	1.3	35
6	Identifying potential novel drugs against Helicobacter pylori by targeting the essential response regulator HsrA. Scientific Reports, 2019, 9, 11294.	1.6	35
7	Expanding the Role of FurA as Essential Global Regulator in Cyanobacteria. PLoS ONE, 2016, 11, e0151384.	1.1	33
8	Siteâ€directed mutagenesis and spectral studies suggest a putative role of FurA from <i>Anabaena</i> sp. PCC 7120 as a heme sensor protein. FEBS Journal, 2012, 279, 2231-2246.	2.2	26
9	Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxidants and Redox Signaling, 2019, 30, 1651-1696.	2.5	25
10	Expression of fur and its antisense α-fur from Microcystis aeruginosa PCC7806 as response to light and oxidative stress. Journal of Plant Physiology, 2011, 168, 2244-2250.	1.6	24
11	Identification of three novel antisense RNAs in the fur locus from unicellular cyanobacteria. Microbiology (United Kingdom), 2011, 157, 3398-3404.	0.7	20
12	FurA influences heterocyst differentiation in <i>Anabaena</i> sp. PCC 7120. FEBS Letters, 2013, 587, 2682-2690.	1.3	19
13	<scp>Z</scp> ur (<scp>FurB</scp>) is a key factor in the control of the oxidative stress response in <scp><i>A</i></scp> <i>nabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology, 2015, 17, 2006-2017.	1.8	19
14	Transcriptional regulators: valuable targets for novel antibacterial strategies. Future Medicinal Chemistry, 2018, 10, 541-560.	1.1	18
15	Repurposing Dihydropyridines for Treatment of Helicobacter pylori Infection. Pharmaceutics, 2019, 11, 681.	2.0	16
16	Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709749.	1.8	16
17	Sequential binding of FurA from Anabaena sp. PCC 7120 to iron boxes: Exploring regulation at the nanoscale. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 623-631.	1.1	14
18	Small Molecule Inhibitors of the Response Regulator ArsR Exhibit Bactericidal Activity against Helicobacter pylori. Microorganisms, 2020, 8, 503.	1.6	14

ANDRES GONZALEZ

#	Article	IF	CITATIONS
19	High-recovery one-step purification of the DNA-binding protein Fur by mild guanidinium chloride treatment. Process Biochemistry, 2010, 45, 292-296.	1.8	10
20	Functional Genomics of Metalloregulators in Cyanobacteria. Advances in Botanical Research, 2013, , 107-156.	0.5	10
21	The Challenge of Iron Stress in Cyanobacteria. , 0, , .		10
22	Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Advances in Microbial Physiology, 2016, 68, 169-217.	1.0	9
23	The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress. BMC Genomics, 2015, 16, 557.	1.2	8
24	Regulation by FurC in <i>Anabaena</i> Links the Oxidative Stress Response to Photosynthetic Metabolism. Plant and Cell Physiology, 2019, 60, 1778-1789.	1.5	8
25	1,4-Dihydropyridine as a Promising Scaffold for Novel Antimicrobials Against Helicobacter pylori. Frontiers in Microbiology, 2022, 13, .	1.5	4
26	Overexpression, immunodetection, and siteâ€directed mutagenesis of <i>Anabaena</i> sp. PCC 7120 flavodoxin: A comprehensive laboratory practice on molecular biology. Biochemistry and Molecular Biology Education, 2018, 46, 493-501.	0.5	2
27	Free Energy Landscape Analysis of Mesoscopic Model for Finding DNA-Protein Binding Sites. Trends in Mathematics, 2014, , 81-85.	0.1	Ο