## **Thomas Peter Kohler**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648661/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Platelets, Bacterial Adhesins and the Pneumococcus. Cells, 2022, 11, 1121.                                                                                                                                          | 4.1 | 9         |
| 2  | αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and<br>Haemostasis, 2022, 20, 1464-1475.                                                                                    | 3.8 | 5         |
| 3  | Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein<br>PnrA. Journal of Molecular Biology, 2021, 433, 166723.                                                              | 4.2 | 2         |
| 4  | The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms, 2021, 9, 1365.                                          | 3.6 | 3         |
| 5  | Innate immune responses at the asymptomatic stage of influenza A viral infections of Streptococcus pneumoniae colonized and non-colonized mice. Scientific Reports, 2021, 11, 20609.                                | 3.3 | 11        |
| 6  | Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 763152.                                         | 3.9 | 4         |
| 7  | Pneumolysin induces platelet destruction, not platelet activation, which can be prevented by immunoglobulin preparations in vitro. Blood Advances, 2020, 4, 6315-6326.                                              | 5.2 | 22        |
| 8  | Proteomic Adaptation of Streptococcus pneumoniae to the Human Antimicrobial Peptide LL-37.<br>Microorganisms, 2020, 8, 413.                                                                                         | 3.6 | 11        |
| 9  | Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae—The role of FcγRIIa<br>and platelet factor 4/heparinantibodies. Journal of Thrombosis and Haemostasis, 2020, 18, 1459-1468.        | 3.8 | 13        |
| 10 | Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Frontiers in<br>Cellular and Infection Microbiology, 2020, 10, 613467.                                                              | 3.9 | 7         |
| 11 | Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Frontiers in<br>Microbiology, 2019, 10, 511.                                                                                    | 3.5 | 10        |
| 12 | Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. Journal of<br>Innate Immunity, 2019, 11, 303-315.                                                                             | 3.8 | 12        |
| 13 | Homophilic protein interactions facilitate bacterial aggregation and IgG-dependent complex formation by the Streptococcus canis M protein SCM. Virulence, 2019, 10, 194-206.                                        | 4.4 | 2         |
| 14 | Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. Journal of Thrombosis and Haemostasis, 2018, 16, 1187-1197.                                                     | 3.8 | 64        |
| 15 | Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce<br>Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.                                                   | 3.4 | 27        |
| 16 | Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation.<br>Frontiers in Immunology, 2018, 9, 2405.                                                                           | 4.8 | 33        |
| 17 | Attachment of phosphorylcholine residues to pneumococcal teichoic acids and modification of<br>substitution patterns by the phosphorylcholine esterase. Journal of Biological Chemistry, 2018, 293,<br>10620-10629. | 3.4 | 17        |
| 18 | Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. Journal of Biological Chemistry, 2017, 292, 5770-5783.                                     | 3.4 | 12        |

THOMAS PETER KOHLER

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATION |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 19 | Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nature Communications, 2017, 8, 2093.                                                                                              | 12.8 | 52       |
| 20 | Mapping the recognition domains of pneumococcal fibronectinâ€binding proteins PavA and PavB<br>demonstrates a common pattern of molecular interactions with fibronectin type III repeats.<br>Molecular Microbiology, 2017, 105, 839-859. | 2.5  | 16       |
| 21 | SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Frontiers in Cellular and Infection Microbiology, 2017, 7, 80.                                                                                                         | 3.9  | 31       |
| 22 | Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells.<br>Frontiers in Cellular and Infection Microbiology, 2016, 6, 48.                                                                        | 3.9  | 7        |
| 23 | Pneumococcal Adhesins PavB and PspC Are Important for the Interplay with Human Thrombospondin-1.<br>Journal of Biological Chemistry, 2015, 290, 14542-14555.                                                                             | 3.4  | 31       |
| 24 | Repeating Structures of the Major Staphylococcal Autolysin Are Essential for the Interaction with<br>Human Thrombospondin 1 and Vitronectin. Journal of Biological Chemistry, 2014, 289, 4070-4082.                                      | 3.4  | 25       |
| 25 | Structural Reevaluation of Streptococcus pneumoniae Lipoteichoic Acid and New Insights into Its<br>Immunostimulatory Potency. Journal of Biological Chemistry, 2013, 288, 15654-15667.                                                   | 3.4  | 87       |