Thomas Peter Kohler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648661/publications.pdf

Version: 2024-02-01

25 papers

513 citations

759233 12 h-index 713466 21 g-index

26 all docs

26 docs citations

times ranked

26

697 citing authors

#	Article	IF	CITATIONS
1	Structural Reevaluation of Streptococcus pneumoniae Lipoteichoic Acid and New Insights into Its Immunostimulatory Potency. Journal of Biological Chemistry, 2013, 288, 15654-15667.	3.4	87
2	Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and Fc \hat{l}^3 RIIA. Journal of Thrombosis and Haemostasis, 2018, 16, 1187-1197.	3.8	64
3	Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nature Communications, 2017, 8, 2093.	12.8	52
4	Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Frontiers in Immunology, 2018, 9, 2405.	4.8	33
5	Pneumococcal Adhesins PavB and PspC Are Important for the Interplay with Human Thrombospondin-1. Journal of Biological Chemistry, 2015, 290, 14542-14555.	3.4	31
6	SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Frontiers in Cellular and Infection Microbiology, 2017, 7, 80.	3.9	31
7	Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.	3.4	27
8	Repeating Structures of the Major Staphylococcal Autolysin Are Essential for the Interaction with Human Thrombospondin 1 and Vitronectin. Journal of Biological Chemistry, 2014, 289, 4070-4082.	3.4	25
9	Pneumolysin induces platelet destruction, not platelet activation, which can be prevented by immunoglobulin preparations in vitro. Blood Advances, 2020, 4, 6315-6326.	5.2	22
10	Attachment of phosphorylcholine residues to pneumococcal teichoic acids and modification of substitution patterns by the phosphorylcholine esterase. Journal of Biological Chemistry, 2018, 293, 10620-10629.	3.4	17
11	Mapping the recognition domains of pneumococcal fibronectinâ€binding proteins PavA and PavB demonstrates a common pattern of molecular interactions with fibronectin type III repeats. Molecular Microbiology, 2017, 105, 839-859.	2.5	16
12	Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniaeâ€"The role of FcγRlla and platelet factor 4/heparinantibodies. Journal of Thrombosis and Haemostasis, 2020, 18, 1459-1468.	3.8	13
13	Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. Journal of Biological Chemistry, 2017, 292, 5770-5783.	3.4	12
14	Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. Journal of Innate Immunity, 2019, 11, 303-315.	3.8	12
15	Proteomic Adaptation of Streptococcus pneumoniae to the Human Antimicrobial Peptide LL-37. Microorganisms, 2020, 8, 413.	3.6	11
16	Innate immune responses at the asymptomatic stage of influenza A viral infections of Streptococcus pneumoniae colonized and non-colonized mice. Scientific Reports, 2021, 11, 20609.	3.3	11
17	Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Frontiers in Microbiology, 2019, 10, 511.	3.5	10
18	Platelets, Bacterial Adhesins and the Pneumococcus. Cells, 2022, 11, 1121.	4.1	9

#	Article	IF	CITATION
19	Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Frontiers in Cellular and Infection Microbiology, 2016, 6, 48.	3.9	7
20	Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Frontiers in Cellular and Infection Microbiology, 2020, 10, 613467.	3.9	7
21	αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and Haemostasis, 2022, 20, 1464-1475.	3.8	5
22	Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 763152.	3.9	4
23	The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms, 2021, 9, 1365.	3.6	3
24	Homophilic protein interactions facilitate bacterial aggregation and IgG-dependent complex formation by the Streptococcus canis M protein SCM. Virulence, 2019, 10, 194-206.	4.4	2
25	Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. Journal of Molecular Biology, 2021, 433, 166723.	4.2	2