James P Gibbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648317/publications.pdf

Version: 2024-02-01

98 papers

4,053 citations

30 h-index 59 g-index

106 all docs

106
docs citations

106 times ranked 3880 citing authors

#	Article	IF	CITATIONS
1	Wetland Loss and Biodiversity Conservation. Conservation Biology, 2000, 14, 314-317.	4.7	469
2	Estimating the Effects of Road Mortality on Turtle Populations. Conservation Biology, 2002, 16, 1647-1652.	4.7	284
3	Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology, 1998, 13, 263-268.	4.2	251
4	Effects of Roads on the Structure of Freshwater Turtle Populations. Conservation Biology, 2004, 18, 1143-1148.	4.7	200
5	Climate Warming and Calling Phenology of Frogs near Ithaca, New York, 1900-1999. Conservation Biology, 2001, 15, 1175-1178.	4.7	162
6	Trends in Sex Ratios of Turtles in the United States: Implications of Road Mortality. Conservation Biology, 2005, 19, 552-556.	4.7	131
7	PHYLOGEOGRAPHY AND HISTORY OF GIANT GALAPAGOS TORTOISES. Evolution; International Journal of Organic Evolution, 2002, 56, 2052-2066.	2.3	128
8	Can road mortality limit populations of pool-breeding amphibians?. Wetlands Ecology and Management, 2005, 13, 281-289.	1.5	127
9	HABITAT FRAGMENTATION AND ARTHROPOD COMMUNITY CHANGE: CARRION BEETLES, PHORETIC MITES, AND FLIES. , $2001,11,79-85.$		122
10	Monitoring and evaluating the ecological integrity of forest ecosystems. Frontiers in Ecology and the Environment, 2009, 7, 308-316.	4.0	108
11	Road crossing structures for amphibians and reptiles: Informing design through behavioral analysis. Biological Conservation, 2008, 141, 2745-2750.	4.1	101
12	Effective Monitoring for Adaptive Wildlife Management: Lessons from the Galapagos Islands. Journal of Wildlife Management, 1999, 63, 1055.	1.8	90
13	CHANGES IN FROG AND TOAD POPULATIONS OVER 30 YEARS IN NEW YORK STATE. , 2005, 15, 1148-1157.		85
14	The Role of Endangered Species Reintroduction in Ecosystem Restoration: Tortoise–Cactus Interactions on Española Island, Galápagos. Restoration Ecology, 2008, 16, 88-93.	2.9	85
15	Giant tortoise genomes provide insights into longevity and age-related disease. Nature Ecology and Evolution, 2019, 3, 87-95.	7.8	79
16	Title is missing!. Conservation Genetics, 2003, 4, 31-46.	1.5	75
17	Amphibian production in forested landscapes in relation to wetland hydroperiod: A case study of vernal pools and beaver ponds. Biological Conservation, 2009, 142, 2293-2302.	4.1	72
18	Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients. Journal of Animal Ecology, 2013, 82, 310-321.	2.8	71

#	Article	IF	CITATIONS
19	Summary of Intrinsic and Extrinsic Factors Affecting Detection Probability of Marsh Birds. Wetlands, 2011, 31, 403-411.	1.5	64
20	Demographic Outcomes and Ecosystem Implications of Giant Tortoise Reintroduction to Española Island, Galapagos. PLoS ONE, 2014, 9, e110742.	2.5	59
21	Giant Tortoises as Ecological Engineers: A Longâ€ŧerm Quasiâ€experiment in the Galápagos Islands. Biotropica, 2010, 42, 208-214.	1.6	58
22	Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. PLoS ONE, 2015, 10, e0138779.	2.5	54
23	Flood Tides Affect Breeding Ecology of Two Sympatric Sharp-Tailed Sparrows. Auk, 2007, 124, 552-560.	1.4	53
24	Genetic analysis of a successful repatriation programme: giant $Gal\tilde{A}_i$ pagos tortoises. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 341-345.	2.6	51
25	Breeding Habitat and Landscape Correlates of Frog Diversity and Abundance in a Tropical Agricultural Landscape. Wetlands, 2011, 31, 1079-1087.	1.5	50
26	Equivalency of $Gal\tilde{A}_i$ pagos Giant Tortoises Used as Ecological Replacement Species to Restore Ecosystem Functions. Conservation Biology, 2013, 27, 701-709.	4.7	45
27	Effects of Warming Conditions in Eastern North American Forests on Red-Backed Salamander Morphology. Conservation Biology, 2006, 20, 913-917.	4.7	41
28	The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in Gal $ ilde{A}_i$ pagos. Biological Conservation, 2013, 157, 225-228.	4.1	39
29	Silphids in urban forests: Diversity and function. Urban Ecosystems, 2004, 7, 371-384.	2.4	38
30	Population structure and movements of freshwater turtles across a road-density gradient. Landscape Ecology, 2010, 25, 791-801.	4.2	37
31	Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise. PLoS ONE, 2009, 4, e6272.	2.5	34
32	An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil. Landscape Ecology, 2012, 27, 87-96.	4.2	33
33	Animal movement in the absence of predation: environmental drivers of movement strategies in a partial migration system. Oikos, 2017, 126, 1004-1019.	2.7	31
34	Concordance Between Morphological and Molecular Markers in Assessing Hybridization Between Sharp-Tailed Sparrows in New England. Auk, 2005, 122, 94-107.	1.4	30
35	Effective Culvert Placement and Design to Facilitate Passage of Amphibians across Roads. Journal of Herpetology, 2010, 44, 618-626.	0.5	29
36	The origin of captive Galápagos tortoises based on DNA analysis: implications for the management of natural populations. Animal Conservation, 2003, 6, 329-337.	2.9	28

#	Article	IF	CITATIONS
37	Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests. Canadian Journal of Forest Research, 2012, 42, 1141-1152.	1.7	28
38	Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecology and Evolution, 2015, 5, 676-694.	1.9	28
39	Identification of Genetically Important Individuals of the Rediscovered Floreana Galápagos Giant Tortoise (Chelonoidis elephantopus) Provides Founders for Species Restoration Program. Scientific Reports, 2017, 7, 11471.	3.3	27
40	Digesta retention time in the $Gal\tilde{A}_i$ pagos tortoise (Chelonoidis nigra). Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2011, 160, 493-497.	1.8	26
41	Densities of Ecological Replacement Herbivores Required to Restore Plant Communities: A Case Study of Giant Tortoises on Pinta Island, Galápagos. Restoration Ecology, 2014, 22, 248-256.	2.9	25
42	Migration triggers in a large herbivore: $Gal\tilde{A}_i$ pagos giant tortoises navigating resource gradients on volcanoes. Ecology, 2019, 100, e02658.	3.2	25
43	Beyond harm's reach? Submersion of river turtle nesting areas and implications for restoration actions after Amazon hydropower development. PeerJ, 2018, 6, e4228.	2.0	24
44	Community involvement works where enforcement fails: conservation success through community-based management of Amazon river turtle nests. PeerJ, 2018, 6, e4856.	2.0	23
45	Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species. Journal of Heredity, 2018, 109, 611-619.	2.4	22
46	Prospects for freshwater turtle population recovery are catalyzed by pan-Amazonian community-based management. Biological Conservation, 2019, 233, 51-60.	4.1	22
47	Golf courses as habitat for aquatic turtles in urbanized landscapes. Landscape and Urban Planning, 2016, 147, 59-70.	7.5	21
48	Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecology and Evolution, 2017, 7, 5426-5434.	1.9	21
49	Integrating Traditional Ecological Knowledge and Remote Sensing for Monitoring Rangeland Dynamics in the Altai Mountain Region. Environmental Management, 2019, 64, 40-51.	2.7	21
50	Contrasting road effect signals in reproduction of long-versus short-lived amphibians. Hydrobiologia, 2011, 664, 213-218.	2.0	19
51	Implications of Mayan agroforestry for biodiversity conservation in the Calakmul Biosphere Reserve, Mexico. Agroforestry Systems, 2014, 88, 269-285.	2.0	19
52	Ecosystem implications of conserving endemic versus eradicating introduced large herbivores in the Galapagos Archipelago. Biological Conservation, 2017, 209, 1-10.	4.1	18
53	Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise. Conservation Biology, 2019, 33, 1404-1414.	4.7	18
54	Improving Wetland Mitigation Site Identification Through Community Distribution Modeling and a Patch-Based Ranking Scheme. Wetlands, 2012, 32, 841-850.	1.5	14

#	Article	IF	CITATIONS
55	Parallel evolution of urban–rural clines in melanism in a widespread mammal. Scientific Reports, 2022, 12, 1752.	3.3	14
56	Giant tortoises hatch on Galapagos island. Nature, 2015, 517, 271-271.	27.8	13
57	Effects of transgenic American chestnut leaf litter on growth and survival of wood frog larvae. Restoration Ecology, 2019, 27, 371-378.	2.9	13
58	Spruce grouse decline in maturing lowland boreal forests of New York. Forest Ecology and Management, 2016, 359, 118-125.	3.2	12
59	Pairing callâ€response surveys and distance sampling for a mammalian carnivore. Journal of Wildlife Management, 2015, 79, 662-671.	1.8	11
60	Population dynamics and biological feasibility of sustainable harvesting as a conservation strategy for tropical and temperate freshwater turtles. PLoS ONE, 2020, 15, e0229689.	2.5	11
61	Introduction of giant tortoises as a replacement "ecosystem engineer―to facilitate restoration of Santa Fe Island, Galapagos. Restoration Ecology, 2022, 30, e13467.	2.9	11
62	A Molecular and Fitness Evaluation of Commercially Available versus Locally Collected Blue Lupine <i>Lupinus perennis</i> L. Seeds for Use in Ecosystem Restoration Efforts. Restoration Ecology, 2012, 20, 456-461.	2.9	10
63	Breeding Effort and Hydroperiod Indicate Habitat Quality of Small, Isolated Wetlands for Amphibians Under Climate Extremes. Wetlands, 2021, 41, 1.	1.5	10
64	Community based actions save Yellow-spotted river turtle (<i>Podocnemis unifilis</i>) eggs and hatchlings flooded by rapid river level rises. Peerl, 2020, 8, e9921.	2.0	10
65	Population Response of Giant Gal $ ilde{A}_i$ pagos Tortoises to Feral Goat Removal. Restoration Ecology, 2013, 21, 181-185.	2.9	9
66	Estimation and Prediction of Grassland Cover in Western Mongolia Using MODIS-Derived Vegetation Indices. Rangeland Ecology and Management, 2017, 70, 723-729.	2.3	9
67	¿POR QUÉ TAN POCAS Opuntia EN LA ISLA ESPAÑOLA-GALÃPAGOS?. EcologÃa Aplicada, 2016, 2, 21.	0.2	9
68	Substrate influences human removal of freshwater turtle nests in the eastern Brazilian Amazon. Scientific Reports, 2020, 10, 8082.	3.3	8
69	Effectiveness of water-saving technologies during early stages of restoration of endemic $\langle i \rangle$ Opuntia $\langle j \rangle$ cacti in the GalÃ _i pagos Islands, Ecuador. PeerJ, 2019, 7, e8156.	2.0	8
70	Canadian Perceptions of Commercial Fisheries Management and Marine Mammal Conservation in the Northwest Atlantic Ocean. Anthrozoos, 1995, 8, 20-30.	1.4	7
71	Galápagos Rail <i>Laterallus spilonotus</i> population change associated with habitat invasion by the Red-barked Quinine Tree <i>Cinchona pubescens</i> Bird Conservation International, 2011, 21, 221-227.	1.3	6
72	Rangeland vegetation dynamics in the Altai mountain region of Mongolia, Russia, Kazakhstan and China: effects of climate, topography, and socio-political context for livestock herding practices. Environmental Research Letters, 2019, 14, 104017.	5.2	6

#	Article	IF	CITATIONS
73	Tortoise populations after 60 years of conservation., 2021,, 401-432.		6
74	Movement ecology. , 2021, , 261-279.		5
75	Costâ€effectiveness of waterâ€saving technologies for restoration of tropical dry forest: a case study from the Galapagos Islands, Ecuador. Restoration Ecology, 2022, 30, e13576.	2.9	5
76	Amazonian runâ€ofâ€river dam reservoir impacts underestimated: Evidence from a before–after control–impact study of freshwater turtle nesting areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 508-522.	2.0	5
77	Impacts of Dams on Freshwater Turtles: A Global Review to Identify Conservation Solutions. Tropical Conservation Science, 2022, 15, 194008292211037.	1.2	5
78	Disambiguating the Minimum Viable Population Concept: Response to Reed and McCoy. Conservation Biology, 2014, 28, 871-873.	4.7	4
79	Manipulation of basking sites for endangered eastern massasauga rattlesnakes. Journal of Wildlife Management, 2016, 80, 803-811.	1.8	4
80	A greener future for the Galapagos: forecasting ecosystem productivity by finding climate analogs in time. Ecosphere, 2021, 12, .	2.2	4
81	Coexistence of the endangered, endemic Chittenango ovate amber snail (Novisuccinea) Tj ETQq1 1 0.784314 rg	gBT/Qverlo	ock ₃ 10 Tf 50
82	Seeking compromise across competing goals in conservation translocations: The case of the †extinct†Floreana Island Galapagos giant tortoise. Journal of Applied Ecology, 2020, 57, 136-148.	4.0	3
83	A new lineage of Galapagos giant tortoises identified from museum samples. Heredity, 2022, 128, 261-270.	2.6	3
84	The Galapagos giant tortoise Chelonoidis phantasticus is not extinct. Communications Biology, 2022, 5, .	4.4	3
85	Scale-dependence in polychlorinated biphenyl (PCB) exposure effects on waterbird habitat occupancy. Ecotoxicology, 2017, 26, 762-771.	2.4	2
86	Role in ecosystems. , 2021, , 299-315.		2
87	Santa Fe Island: Return of tortoises via a replacement species. , 2021, , 483-499.		1
88	When De-extinction Really Happens: The Revival of the Floreana Giant Tortoises in the Galápagos Archipelago. Environmental History, 2022, 27, 334-339.	0.5	1
89	Monitoring and Science: Comfortable Bedfellows. Conservation Biology, 1995, 9, 465-467.	4.7	0
90	Faculty response. Frontiers in Ecology and the Environment, 2008, 6, 506-506.	4.0	0

#	Article	IF	CITATIONS
91	Habitats. , 2021, , 281-298.		О
92	Title is missing!. , 2020, 15, e0229689.		О
93	Title is missing!. , 2020, 15, e0229689.		O
94	Title is missing!. , 2020, 15, e0229689.		0
95	Title is missing!. , 2020, 15, e0229689.		O
96	Title is missing!. , 2020, 15, e0229689.		0
97	Title is missing!. , 2020, 15, e0229689.		O
98	Title is missing!. , 2020, 15, e0229689.		0