Gazi N Aliev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648097/publications.pdf

Version: 2024-02-01

840776 752698 33 412 11 20 citations h-index g-index papers 34 34 34 438 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hypersonic acoustic mirrors and microcavities in porous silicon. Applied Physics Letters, 2010, 96, .	3.3	41
2	Elastic properties of porous silicon studied by acoustic transmission spectroscopy. Journal of Applied Physics, 2011, 110, 043534.	2.5	41
3	Photo-oxidation by singlet oxygen generated on nanoporous silicon in a LED-powered reactor. Chemical Engineering Journal, 2008, 136, 331-336.	12.7	38
4	Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation. Journal of Applied Physics, 2014, 116, .	2.5	29
5	Origin of the red luminescence in Mg-doped GaN. Applied Physics Letters, 2006, 89, 022107.	3.3	28
6	Hypersonic rugate filters based on porous silicon. Applied Physics Letters, 2010, 97, .	3.3	24
7	Hydrothermal Conversion of One-Photon-Fluorescent Poly(4-vinylpyridine) into Two-Photon-Fluorescent Carbon Nanodots. Langmuir, 2014, 30, 11746-11752.	3.5	24
8	Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures. Journal of Applied Physics, 2014, 115 , .	2.5	20
9	Optically detected magnetic resonance of epitaxial nitrogen-doped ZnO. Physical Review B, 2004, 70, .	3.2	18
10	Nature of acceptor states in magnesium-doped gallium nitride. Physical Review B, 2005, 71, .	3.2	16
11	Porous silicon bulk acoustic wave resonator with integrated transducer. Nanoscale Research Letters, 2012, 7, 378.	5.7	13
12	Optics and magneto-optics of ZnSe heteroepitaxial layers. Journal of Crystal Growth, 1996, 159, 523-527.	1.5	11
13	The role of vacancies in the red luminescence from Mg-doped GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1919-1922.	0.8	11
14	Porosity dependence of the acoustic longitudinal velocity in heavily doped p++porous silicon layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1670-1674.	0.8	11
15	Exciton-Polariton Behaviour of the Absorption Edge of Thin GaAs Crystals with the "Super-Quantum― Thickness and MQW Enlarged Barriers. Physica Status Solidi A, 1997, 164, 193-197.	1.7	9
16	Effects of spatial dispersion in the temperature dependence of the optical absorption in ZnSe heteroepitaxial layers and CdTe and ZnTe crystals. Journal of Crystal Growth, 1996, 159, 843-847.	1.5	8
17	Structural, photonic band-gap, and luminescence properties of the opal-erbium composite. Physics of the Solid State, 2002, 44, 2224-2231.	0.6	8
18	Optically detected magnetic resonance of paired defects in as-grown magnesium-doped GaN. Physical Review B, 2003, 67, .	3.2	8

#	Article	IF	CITATIONS
19	Hypersonic phononic stopbands at small angles of wave incidence in porous silicon multilayers. Journal Physics D: Applied Physics, 2015, 48, 325501.	2.8	8
20	Optically detected electron spin-flip resonance in CdMnTe. Physica Status Solidi (B): Basic Research, 2006, 243, 887-891.	1.5	6
21	LO-phonon assisted tunneling from spatially direct to indirect exciton in semimagnetic double quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 511-517.	2.7	5
22	Mosaic Structure and Optical Properties of III–Nitrides. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 558-562.	0.8	5
23	Porous silicon as an acoustic material for BAW. , 2012, , .		5
24	Magnetic field dependence of singlet oxygen generation by nanoporous silicon. Nanoscale Research Letters, 2014, 9, 342.	5.7	5
25	Spin-flip Raman scattering studies of ZnSe bulk crystals doped with antimony. Semiconductor Science and Technology, 2003, 18, 978-982.	2.0	4
26	Spin-flip Raman scattering studies of antimony-doped ZnSe. Physica Status Solidi (B): Basic Research, 2004, 241, 487-490.	1.5	4
27	Optically-detected magnetic resonance of spin-paired complexes emitting in the2.3eVspectral region in Mg-doped GaN. Physical Review B, 2006, 74, .	3.2	4
28	Thickness dependence of exciton absorption in pure GaAs crystals at the "prequantum―limit. Physics of the Solid State, 1998, 40, 800-802.	0.6	3
29	Observation of oxygen dimers via energy transfer from silicon nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 690-693.	2.8	1
30	Singlet oxygen generation by nanoporous silicon: photoluminescence dynamics in magnetic field. Nanotechnology, 2020, 31, 035703.	2.6	1
31	Optical and Energy Spectra of MBE-Grown Planar CdSe QD System in ZnSSe Matrix. Physica Status Solidi A, 1997, 164, 449-453.	1.7	0
32	The magnesium acceptor states in GaN: an investigation by optically-detected magnetic resonance. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1892-1896.	0.8	0
33	Nanoscale Multilayers in Porous Silicon for THz Phonon Engineering. , 2008, , .		0