
Maxwell J Robb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647829/publications.pdf Version: 2024-02-01

MAXWELL L ROBB

#	Article	IF	CITATIONS
1	A mechanochemical two for one: Mechanical activation of norbornâ€2â€enâ€7â€one releases carbon monoxide and switches on aggregationâ€induced emission. Aggregate, 2022, 3, .	5.2	Ο
2	Quantifying Activation Rates of Scissile Mechanophores and the Influence of Dispersity. Macromolecules, 2022, 55, 276-283.	2.2	15
3	Examining the Impact of Relative Mechanophore Activity on the Selectivity of Ultrasound-Induced Mechanochemical Chain Scission. ACS Macro Letters, 2022, 11, 733-738.	2.3	14
4	Incorporation of a Tethered Alcohol Enables Efficient Mechanically Triggered Release in Aprotic Environments. ACS Macro Letters, 2022, 11, 948-953.	2.3	7
5	A modular approach to mechanically gated photoswitching with color-tunable molecular force probes. Chemical Science, 2021, 12, 11703-11709.	3.7	19
6	Generation of an Elusive Permanent Merocyanine via a Unique Mechanochemical Reaction Pathway. Journal of the American Chemical Society, 2021, 143, 7925-7929.	6.6	37
7	Comparison of the reactivity of isomeric <scp>2<i>H</i></scp> ―and <scp>3<i>H</i></scp> â€naphthopyran mechanophores. Journal of Polymer Science, 2021, 59, 2537-2544.	2.0	16
8	Mechanically Triggered Release of Functionally Diverse Molecular Payloads from Masked 2-Furylcarbinol Derivatives. ACS Central Science, 2021, 7, 1216-1224.	5.3	36
9	5-Aryloxy substitution enables efficient mechanically triggered release from a synthetically accessible masked 2-furylcarbinol mechanophore. Chemical Communications, 2021, 57, 11173-11176.	2.2	16
10	Harnessing the Power of Force: Development of Mechanophores for Molecular Release. Journal of the American Chemical Society, 2021, 143, 21461-21473.	6.6	54
11	Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. Journal of the American Chemical Society, 2020, 142, 16364-16381.	6.6	112
12	Designing naphthopyran mechanophores with tunable mechanochromic behavior. Chemical Science, 2020, 11, 4525-4530.	3.7	61
13	Force-Dependent Multicolor Mechanochromism from a Single Mechanophore. Journal of the American Chemical Society, 2019, 141, 11388-11392.	6.6	122
14	Mechanochemically Gated Photoswitching: Expanding the Scope of Polymer Mechanochromism. Synlett, 2019, 30, 1725-1732.	1.0	19
15	Mechanically Triggered Small Molecule Release from a Masked Furfuryl Carbonate. Journal of the American Chemical Society, 2019, 141, 15018-15023.	6.6	114
16	Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. Journal of the American Chemical Society, 2019, 141, 4080-4085.	6.6	48
17	Interfacial Mechanophore Activation Using Laser-Induced Stress Waves. Journal of the American Chemical Society, 2018, 140, 5000-5003.	6.6	36
18	Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane. Macromolecules, 2018, 51, 9177-9183.	2.2	110

Maxwell J Robb

#	Article	IF	CITATIONS
19	Mechanochemical Regulation of a Photochemical Reaction. Journal of the American Chemical Society, 2018, 140, 14073-14077.	6.6	76
20	Poly(ether sulfone)s using a rigid dibenzothiophene dioxide heterocycle. Journal of Polymer Science Part A, 2016, 54, 3127-3131.	2.5	5
21	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	13.7	322
22	Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. Journal of the American Chemical Society, 2016, 138, 12328-12331.	6.6	163
23	A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. ACS Central Science, 2016, 2, 598-603.	5.3	113
24	Significance of miscibility in multidonor bulk heterojunction solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 237-246.	2.4	16
25	Is Molecular Weight or Degree of Polymerization a Better Descriptor of Ultrasound-Induced Mechanochemical Transduction?. ACS Macro Letters, 2016, 5, 177-180.	2.3	108
26	Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chemical Science, 2016, 7, 1914-1919.	3.7	91
27	A Retro-Staudinger Cycloaddition: Mechanochemical Cycloelimination of a β-Lactam Mechanophore. Journal of the American Chemical Society, 2015, 137, 10946-10949.	6.6	61
28	Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). Journal of Polymer Science Part A, 2015, 53, 831-841.	2.5	43
29	Modulating the Properties of Azulene ontaining Polymers through Controlled Incorporation of Regioisomers. Advanced Functional Materials, 2014, 24, 7338-7347.	7.8	65
30	Synthetic Aptamer-Polymer Hybrid Constructs for Programmed Drug Delivery into Specific Target Cells. Journal of the American Chemical Society, 2014, 136, 15010-15015.	6.6	110
31	Modulating structure and properties in organic chromophores: influence of azulene as a building block. Chemical Science, 2014, 5, 3753-3760.	3.7	74
32	Power Factor Enhancement in Solutionâ€Processed Organic nâ€Type Thermoelectrics Through Molecular Design. Advanced Materials, 2014, 26, 3473-3477.	11.1	196
33	One-Step Synthesis of Unsymmetrical <i>N</i> -Alkyl- <i>N</i> ′-aryl Perylene Diimides. Journal of Organic Chemistry, 2014, 79, 6360-6365.	1.7	28
34	A One-Step Strategy for End-Functionalized Donor–Acceptor Conjugated Polymers. Macromolecules, 2013, 46, 6431-6438.	2.2	49
35	25th Anniversary Article: No Assembly Required: Recent Advances in Fully Conjugated Block Copolymers. Advanced Materials, 2013, 25, 5686-5700.	11.1	74
36	Supramolecular guests in solvent driven block copolymer assembly: from internally structured nanoparticles to micelles. Polymer Chemistry, 2013, 4, 5038.	1.9	40

Maxwell J Robb

#	Article	IF	CITATIONS
37	Interpreting the Density of States Extracted from Organic Solar Cells Using Transient Photocurrent Measurements. Journal of Physical Chemistry C, 2013, 117, 12407-12414.	1.5	63
38	Fabrication of Unique Chemical Patterns and Concentration Gradients with Visible Light. Journal of the American Chemical Society, 2013, 135, 14106-14109.	6.6	106
39	A renaissance of color: New structures and building blocks for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1263-1271.	2.5	109
40	Functional block copolymer nanoparticles: toward the next generation of delivery vehicles. Polymer Chemistry, 2012, 3, 1618.	1.9	56
41	A Modular Strategy for Fully Conjugated Donor–Acceptor Block Copolymers. Journal of the American Chemical Society, 2012, 134, 16040-16046.	6.6	124
42	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	3.2	51
43	De Novo Design of Bioactive Protein-Resembling Nanospheres via Dendrimer-Templated Peptide Amphiphile Assembly. Nano Letters, 2011, 11, 3946-3950.	4.5	49
44	Exhaustive glycosylation, pegylation, and glutathionylation of a [G4]â€ene ₄₈ dendrimer via photoinduced thiolâ€ene coupling. Journal of Polymer Science Part A, 2011, 49, 4468-4475.	2.5	51
45	Pushing the Limits for Thiolâ ``Ene and CuAAC Reactions: Synthesis of a 6th Generation Dendrimer in a Single Day. Macromolecules, 2010, 43, 6625-6631.	2.2	158
46	Poly(arylene sulfide)s by nucleophilic aromatic substitution polymerization of 2,7â€difluorothianthrene. Journal of Polymer Science Part A, 2009, 47, 2453-2461.	2.5	34