Wenxiang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOF Thin Film oated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. Advanced Materials, 2016, 28, 5229-5234.	21.0	492
2	Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method. Journal of Materials Chemistry A, 2014, 2, 2544-2554.	10.3	301
3	MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors and Actuators B: Chemical, 2016, 225, 158-166.	7.8	191
4	Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 2015, 166-167, 260-269.	20.2	175
5	Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Applied Catalysis B: Environmental, 2015, 162, 110-121.	20.2	159
6	Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catalysis Communications, 2014, 56, 134-138.	3.3	133
7	Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts. Applied Catalysis B: Environmental, 2018, 226, 585-595.	20.2	113
8	Decoration of one-dimensional MnO 2 with Co 3 O 4 nanoparticles: A heterogeneous interface for remarkably promoting catalytic oxidation activity. Chemical Engineering Journal, 2016, 306, 709-718.	12.7	100
9	Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nature Communications, 2020, 11, 1062.	12.8	90
10	Alkali-metal poisoning effect of total CO and propane oxidation over Co3O4 nanocatalysts. Applied Catalysis B: Environmental, 2019, 256, 117859.	20.2	78
11	Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs. Journal of Rare Earths, 2015, 33, 62-69.	4.8	75
12	Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1â^'xCexMnO3 catalysts. Particuology, 2015, 19, 60-68.	3.6	66
13	Synergistic Effects in Porous Mn–Co Mixed Oxide Nanorods Enhance Catalytic Deep Oxidation of Benzene. Catalysis Letters, 2014, 144, 1900-1910.	2.6	65
14	Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods. Materials Letters, 2014, 132, 317-321.	2.6	62
15	Destroying the structure of extracellular polymeric substance to improve the dewatering performance of waste activated sludge by ionic liquid. Water Research, 2021, 199, 117161.	11.3	58
16	Importance of porous structure and synergistic effect on the catalytic oxidation activities over hierarchical Mn–Ni composite oxides. Catalysis Science and Technology, 2016, 6, 1710-1718.	4.1	55
17	Higher Oxidation State Responsible for Ozone Decomposition at Room Temperature over Manganese and Cobalt Oxides: Effect of Calcination Temperature. Ozone: Science and Engineering, 2014, 36, 502-512.	2.5	49
18	Hierarchical hollow ZnO cubes constructed using self-sacrificial ZIF-8 frameworks and their enhanced benzene gas-sensing properties. New Journal of Chemistry, 2015, 39, 7060-7065.	2.8	48

WENXIANG TANG

#	Article	IF	CITATIONS
19	Core-shell Au@ZnO nanoparticles derived from Au@MOF and their sub-ppm level acetone gas-sensing performance. Powder Technology, 2016, 304, 241-247.	4.2	43
20	Template-Guided Programmable Janus Heteronanostructure Arrays for Efficient Plasmonic Photocatalysis. Nano Letters, 2018, 18, 4914-4921.	9.1	42
21	Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs. Science China Chemistry, 2015, 58, 1359-1366.	8.2	41
22	Promoting effect of acid treatment on Pd-Ni/SBA-15 catalyst for complete oxidation of gaseous benzene. Catalysis Communications, 2017, 89, 86-90.	3.3	39
23	MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial Effect for promoting catalytic oxidation activity. Catalysis Today, 2018, 308, 58-63.	4.4	39
24	Scalable Integration of Highly Uniform Mn _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanosheet Array onto Ceramic Monolithic Substrates for Lowâ€Temperature Propane Oxidation. ChemCatChem, 2017, 9, 4112-4119.	3.7	36
25	Copper manganese oxide enhanced nanoarray-based monolithic catalysts for hydrocarbon oxidation. Journal of Materials Chemistry A, 2018, 6, 19047-19057.	10.3	35
26	Restrictive nanoreactor for growth of transition metal oxides (MnO2, Co3O4, NiO) nanocrystal with enhanced catalytic oxidation activity. Catalysis Communications, 2015, 72, 165-169.	3.3	31
27	Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catalysis Today, 2016, 278, 203-208.	4.4	31
28	Limited nanospace for growth of Ni–Mn composite oxide nanocrystals with enhanced catalytic activity for deep oxidation of benzene. Catalysis Today, 2015, 258, 148-155.	4.4	29
29	Pre-surface leached cordierite honeycombs for MnxCo3-xO4 nano-sheet array integration with enhanced hydrocarbons combustion. Catalysis Today, 2019, 320, 196-203.	4.4	26
30	Surface Diffusion of Pt Clusters in/on SiO ₂ Matrix at Elevated Temperatures and Their Improved Catalytic Activities in Benzene Oxidation. Journal of Physical Chemistry C, 2014, 118, 22719-22729.	3.1	23
31	Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene. RSC Advances, 2014, 4, 26796.	3.6	22
32	Large-scale synthesis of hierarchical MnO2 for benzene catalytic oxidation. Particuology, 2014, 14, 71-75.	3.6	21
33	Cuâ€Decorated ZnO Nanorod Array Integrated Structured Catalysts for Lowâ€Pressure CO ₂ Hydrogenation to Methanol. Advanced Materials Interfaces, 2018, 5, 1700730.	3.7	20
34	Template-free synthesis of hierarchical layer-stacking CeO2 nanostructure with enhanced catalytic oxidation activity. Materials Letters, 2015, 140, 95-98.	2.6	19
35	Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights. Emission Control Science and Technology, 2017, 3, 18-36.	1.5	18
36	Influence of CoO glass–ceramic coating on the anti-oxidation behavior and thermal shock resistance of 200 stainless steel at elevated temperature. Ceramics International, 2014, 40, 12327-12335.	4.8	16

WENXIANG TANG

#	Article	IF	CITATIONS
37	A protective ceramic coating to improve oxidation and thermal shock resistance on CrMn alloy at elevated temperatures. Ceramics International, 2015, 41, 4706-4713.	4.8	15
38	Catalytic removal of gaseous benzene over Pt/SBA-15 catalyst: the effect of the preparation method. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 711-723.	1.7	15
39	Mesoporous Perovskite Nanotubeâ€Array Enhanced Metallicâ€State Platinum Dispersion for Low Temperature Propane Oxidation. ChemCatChem, 2018, 10, 2184-2189.	3.7	14
40	In Situ Synthesis of Monolithic Cu ₂ O–CuO/Cu Catalysts for Effective Ozone Decomposition. Journal of Physical Chemistry C, 2022, 126, 317-325.	3.1	13
41	Co-templating synthesis of mesoporous hollow silica spheres and their application in catalytic oxidation with low Pt loading. Materials Letters, 2016, 168, 111-115.	2.6	12
42	Microemulsion solventing-out co-precipitation strategy for fabricating highly active Cu–ZnO/Al2O3 dual site catalysts for reverse water gas shift. Catalysis Science and Technology, 2020, 10, 2343-2352.	4.1	10
43	Insights into the Sintering Resistance of Sphere-like Mn ₂ O ₃ in Catalytic Toluene Oxidation: Effect of Manganese Salt Precursor and Crucial Role of Residual Trace Sulfur. Industrial & Engineering Chemistry Research, 2022, 61, 6414-6426.	3.7	10
44	Nanostructured TiO2 Support Effect on Hydrothermal Stability of Platinum based Catalysts. Microscopy and Microanalysis, 2018, 24, 1642-1643.	0.4	7
45	NiO nanosheet array integrated monoliths for low temperature catalytic propane oxidation: A study on the promotion effect of Ce doping. Catalysis Today, 2021, 360, 194-203.	4.4	6
46	Preparation and Li+ storage properties of hierarchical hollow porous carbon spheres. Particuology, 2014, 14, 44-50.	3.6	5
47	Reaction Performance and Flow Behavior of Isobutane/1-Butene and H ₂ SO ₄ in the Microreactor Configured with the Micro-mixer. Industrial & Engineering Chemistry Research, 2022, 61, 9122-9135.	3.7	4
48	Methanol Production: Cuâ€Decorated ZnO Nanorod Array Integrated Structured Catalysts for Lowâ€Pressure CO ₂ Hydrogenation to Methanol (Adv. Mater. Interfaces 3/2018). Advanced Materials Interfaces, 2018, 5, 1870011.	3.7	3
49	Novel CrFeCoNiSi ₆ /Si System for Boron Removal from Metallurgical Silicon Feedstock. Industrial & amp: Engineering Chemistry Research, 2022, 61, 3412-3417.	3.7	1