Shu-I Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647/publications.pdf

Version: 2024-02-01

567281 888059 4,969 17 15 17 citations h-index g-index papers 17 17 17 4030 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology, 2005, 15, 2038-2043.	3.9	786
2	Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis. Plant Cell, 2006, 18, 412-421.	6.6	765
3	Signaling Network in Sensing Phosphate Availability in Plants. Annual Review of Plant Biology, 2011, 62, 185-206.	18.7	682
4	Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 2009, 151, 2120-2132.	4.8	631
5	pho2, a Phosphate Overaccumulator, Is Caused by a Nonsense Mutation in a MicroRNA399 Target Gene. Plant Physiology, 2006, 141, 1000-1011.	4.8	573
6	Regulatory Network of MicroRNA399 and <i>PHO2</i> by Systemic Signaling Â. Plant Physiology, 2008, 147, 732-746.	4.8	401
7	PHO2-Dependent Degradation of PHO1 Modulates Phosphate Homeostasis in <i>Arabidopsis</i> Cell, 2012, 24, 2168-2183.	6.6	308
8	Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in <i>Arabidopsis</i> Roots. Plant Cell, 2013, 25, 4044-4060.	6.6	242
9	Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation. Plant and Cell Physiology, 2010, 51, 2119-2131.	3.1	188
10	Molecular regulators of phosphate homeostasis in plants. Journal of Experimental Botany, 2009, 60, 1427-1438.	4.8	151
11	Differential Regulation of FLOWERING LOCUS C Expression by Vernalization in Cabbage and Arabidopsis. Plant Physiology, 2005, 137, 1037-1048.	4.8	117
12	Abundance of tRNA-derived small RNAs in phosphate-starved Arabidopsis roots. Plant Signaling and Behavior, 2010, 5, 537-539.	2.4	47
13	DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato <i>Solanum peruvianum (i) using protoplast regeneration. Plant Physiology, 2022, 188, 1917-1930.</i>	4.8	39
14	Long-distance movement and differential targeting of microRNA399s. Plant Signaling and Behavior, 2008, 3, 730-732.	2.4	18
15	Application of Random Forest and ICON Models Combined with Weather Forecasts to Predict Soil Temperature and Water Content in a Greenhouse. Water (Switzerland), 2020, 12, 1176.	2.7	16
16	Development of a Grafting Method and Healing Conditions to Improve Cabbage Head Quality. HortTechnology, 2019, 29, 57-64.	0.9	3
17	Development of an In Planta system to monitor phosphorus status by agroinfiltration and agroinjection. Plant and Soil, 2016, 409, 313-328.	3.7	2