
Sheng-chi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646998/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Nanodot Additives Realize Highâ€Performance Airâ€Stable p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2%. Advanced Energy Materials, 2018, 8, 1802323.	19.5	86
2	Microstructures and optoelectronic properties of nickel oxide films deposited by reactive magnetron sputtering at various working pressures of pure oxygen environment. Ceramics International, 2017, 43, S369-S375.	4.8	30
3	Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering. Applied Surface Science, 2020, 508, 145106.	6.1	30
4	p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition. Ceramics International, 2018, 44, 3291-3296.	4.8	18
5	Optoelectronic Properties and the Electrical Stability of Ga-Doped ZnO Thin Films Prepared via Radio Frequency Sputtering. Materials, 2016, 9, 987.	2.9	14
6	Ag composition gradient CuCr0.93Mg0.07O2/Ag/CuCr0.93Mg0.07O2 coatings with improved p-type optoelectronic performances. Journal of Materials Science, 2017, 52, 11537-11546.	3.7	14
7	Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions. Journal Physics D: Applied Physics, 2018, 51, 105109.	2.8	13
8	Impact of active layer thickness of nitrogen-doped In–Sn–Zn–O films on materials and thin film transistor performances. Journal Physics D: Applied Physics, 2018, 51, 175101.	2.8	13
9	The Influence of Oxygen Flow Ratio on the Optoelectronic Properties of p-Type Ni1â^'xO Films Deposited by Ion Beam Assisted Sputtering. Coatings, 2018, 8, 168.	2.6	12
10	Crystallization mechanisms and recording characteristics of Si/CuSi bilayer for write-once blu-ray disc. Applied Physics Letters, 2011, 99, .	3.3	9
11	Transparent Conductive p-Type Cuprous Oxide Films in Vis-NIR Region Prepared by Ion-Beam Assisted DC Reactive Sputtering. Coatings, 2020, 10, 473.	2.6	9
12	Multi-Ferroic Properties on BiFeO3/BaTiO3 Multi-Layer Thin-Film Structures with the Strong Magneto-Electric Effect for the Application of Magneto-Electric Devices. Coatings, 2021, 11, 66.	2.6	8
13	Influence of Sputtering Power on the Electrical Properties of In-Sn-Zn Oxide Thin Films Deposited by High Power Impulse Magnetron Sputtering. Coatings, 2019, 9, 715.	2.6	6
14	The Optoelectronic Properties of p-Type Cr-Deficient Cu[Cr0.95â^'xMg0.05]O2 Films Deposited by Reactive Magnetron Sputtering. Materials, 2020, 13, 2376.	2.9	6
15	Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4767-4776.	2.2	5
16	Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles. Nanoscale Research Letters, 2017, 12, 224.	5.7	5
17	Electrolytic Migration of Ag-Pd Alloy Wires with Various Pd Contents. Journal of Electronic Materials, 2018, 47, 3634-3638.	2.2	5
18	A study into enhanced oxidation resistance and its mechanism in Cr1-xAlxN/CrN/Cr multilayer films deposited on 9–12 % Cr heat-resistant steel. Ceramics International, 2021, 47, 19134-19141.	4.8	5

#	Article	IF	CITATIONS
19	In-Sn-Zn Oxide Nanocomposite Films with Enhanced Electrical Properties Deposited by High-Power Impulse Magnetron Sputtering. Nanomaterials, 2021, 11, 2016.	4.1	4
20	Perovskite Solar Cells: Carbon Nanodot Additives Realize Highâ€Performance Airâ€5table p–i–n Perovskite Solar Cells Providing Efficiencies of up to 20.2% (Adv. Energy Mater. 34/2018). Advanced Energy Materials, 2018, 8, 1870147.	19.5	3
21	NiGe Thin Films for Write-Once Blue Laser Media. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	2
22	Growth Direction Control of ZnO Nanorods on the Edge of Patterned Indium–Tin Oxide/Aluminum-Doped Zinc Oxide Bilayers. Crystal Growth and Design, 2017, 17, 3100-3106.	3.0	2
23	Effect of Underlayer Structures on Microstructures and Magnetic Properties of Co-Rich Co-Pt Films Prepared at Ambient Temperature. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1