List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646903/publications.pdf Version: 2024-02-01

HONGWEI YANG

#	Article	IF	CITATIONS
1	Printability during projection-based 3D bioprinting. Bioactive Materials, 2022, 11, 254-267.	15.6	28
2	Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals. Materials Horizons, 2022, 9, 961-972.	12.2	26
3	Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Science Immunology, 2022, 7, eabk2092.	11.9	48
4	Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Bio-Design and Manufacturing, 2022, 5, 580-606.	7.7	12
5	Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes. ACS Applied Materials & Interfaces, 2022, 14, 13458-13467.	8.0	31
6	Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Design and Manufacturing, 2022, 5, 633-639.	7.7	17
7	Photocurable Hydrogel Substrate—Better Potential Substitute on Bone-Marrow-Derived Dendritic Cells Culturing. Materials, 2022, 15, 3322.	2.9	4
8	A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virologica Sinica, 2022, , .	3.0	6
9	Microâ€Computed Tomography Analysis of Femoral Head Necrosis After Longâ€Term Internal Fixation for Femoral Neck Fracture. Orthopaedic Surgery, 2022, 14, 1186-1192.	1.8	3
10	Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS Applied Materials & Interfaces, 2022, 14, 28501-28513.	8.0	10
11	Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Biofabrication, 2021, 13, 035032.	7.1	51
12	Lightweight 3D bioprinting with point by point photocuring. Bioactive Materials, 2021, 6, 1402-1412.	15.6	23
13	Facile 3D cell culture protocol based on photocurable hydrogels. Bio-Design and Manufacturing, 2021, 4, 149-153.	7.7	19
14	Premigratory neural crest stem cells generate enteric neurons populating the mouse colon and regulating peristalsis in tissue-engineered intestine. Stem Cells Translational Medicine, 2021, 10, 922-938.	3.3	12
15	Self-sintering liquid metal ink with LAPONITE® for flexible electronics. Journal of Materials Chemistry C, 2021, 9, 3070-3080.	5.5	21
16	Peripheral Nerve Regeneration with 3D Printed Bionic Scaffolds Loading Neural Crest Stem Cell Derived Schwann Cell Progenitors. Advanced Functional Materials, 2021, 31, 2010215.	14.9	25
17	3D Cell Culture—Can It Be As Popular as 2D Cell Culture?. Advanced NanoBiomed Research, 2021, 1, 2000066.	3.6	20
18	A flexible porous chiral auxetic tracheal stent with ciliated epithelium. Acta Biomaterialia, 2021, 124, 153-165.	8.3	24

#	Article	IF	CITATIONS
19	Recent Progress in 3D Printing of Smart Structures: Classification, Challenges, and Trends. Advanced Intelligent Systems, 2021, 3, 2000271.	6.1	16
20	Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices. Sensors, 2021, 21, 3238.	3.8	12
21	A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomaterialia, 2021, 128, 150-162.	8.3	120
22	3D Printing of Physical Organ Models: Recent Developments and Challenges. Advanced Science, 2021, 8, e2101394.	11.2	61
23	Biomanufacturing: from biomedicine to biomedicine. Bio-Design and Manufacturing, 2021, 4, 912-913.	7.7	7
24	A novel wavy non-uniform ligament chiral stent with J-shaped stress–strain behavior to mimic the native trachea. Bio-Design and Manufacturing, 2021, 4, 851-866.	7.7	6
25	Detection of Foreign-Body in Milk Powder Processing Based on Terahertz Imaging and Spectrum. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 878.	2.2	11
26	Growth differentiation factor-5–gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication, 2021, 13, 015010.	7.1	48
27	Synthesis and the growth mechanism of ultrafine silver nanowires by using 5-chloro-2-thienylmagnesium bromide as the additive. RSC Advances, 2021, 11, 37063-37066.	3.6	1
28	Recent Progress in 3D Printing of Smart Structures: Classification, Challenges, and Trends. Advanced Intelligent Systems, 2021, 3, .	6.1	2
29	3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. Materials Science and Engineering C, 2020, 107, 110269.	7.3	44
30	Allâ€Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquidâ€Metal–Silicone Inks. Advanced Functional Materials, 2020, 30, 1906683.	14.9	138
31	Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Materials Horizons, 2020, 7, 82-92.	12.2	55
32	Synchronous 3D Bioprinting of Large‣cale Cell‣aden Constructs with Nutrient Networks. Advanced Healthcare Materials, 2020, 9, e1901142.	7.6	57
33	Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 2020, 15, 529-557.	9.1	264
34	Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 2020, 10, 300-311.	10.0	60
35	Ascorbic Acid-Assisted One-Step Chemical Reaction To Design an Ultralong Silver Nanowire Structure for a Highly Transparent Flexible Conducting Film. ACS Omega, 2020, 5, 18458-18464.	3.5	6
36	Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization. Journal of Zhejiang University: Science A, 2020, 21, 859-875.	2.4	18

#	Article	IF	CITATIONS
37	Selfâ€Adaptive Allâ€Inâ€One Delivery Chip for Rapid Skin Nerves Regeneration by Endogenous Mesenchymal Stem Cells. Advanced Functional Materials, 2020, 30, 2001751.	14.9	32
38	3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomaterials Science, 2020, 8, 5020-5028.	5.4	82
39	Hydrogels: The Next Generation Body Materials for Microfluidic Chips?. Small, 2020, 16, e2003797.	10.0	56
40	Dodecylamine-mediated synthesis and growth mechanism of copper nanowires with an aspect ratio of over 10000. Materials Letters, 2020, 274, 128029.	2.6	6
41	HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. Journal of Materials Chemistry B, 2020, 8, 6115-6127.	5.8	41
42	Why choose 3D bioprinting? Part II: methods and bioprinters. Bio-Design and Manufacturing, 2020, 3, 1-4.	7.7	39
43	Why choose 3D bioprinting? Part III: printing in vitro 3D models for drug screening. Bio-Design and Manufacturing, 2020, 3, 160-163.	7.7	12
44	Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Advanced Healthcare Materials, 2020, 9, e1901773.	7.6	63
45	4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS Applied Materials & Interfaces, 2020, 12, 12068-12074.	8.0	44
46	Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Design and Manufacturing, 2020, 3, 30-39.	7.7	65
47	Cell-modified bioprinted microspheres for vascular regeneration. Materials Science and Engineering C, 2020, 112, 110896.	7.3	6
48	On the Investigation of Surface Integrity of Ti6Al4V ELI Using Si-Mixed Electric Discharge Machining. Materials, 2020, 13, 1549.	2.9	55
49	A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020, 30, 2000187.	14.9	379
50	A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy <i>via</i> enhanced ammonia reduction. Biomaterials Science, 2020, 8, 2814-2824.	5.4	21
51	Bioprinting of novel 3D tumor array chip for drug screening. Bio-Design and Manufacturing, 2020, 3, 175-188.	7.7	38
52	Variable bead width of material extrusion-based additive manufacturing. Journal of Zhejiang University: Science A, 2019, 20, 73-82.	2.4	11
53	Synthesis of Silver Nanowires by Using Tetrabutyl Ammonium Dibromochloride as the Auxiliary for Low-Haze Flexible Transparent Conductive Films. Langmuir, 2019, 35, 11829-11835.	3.5	11
54	Why choose 3D bioprinting? Part I: a brief introduction of 3D bioprinting for the beginners. Bio-Design and Manufacturing, 2019, 2, 221-224.	7.7	15

#	Article	IF	CITATIONS
55	Coaxial Bioprinting: Bioprinting of Cell‣aden Microfiber: Can It Become a Standard Product? (Adv.) Tj ETQq1 1	0.784314	rgBT /Overl
56	Bioprinting of Cell‣aden Microfiber: Can It Become a Standard Product?. Advanced Healthcare Materials, 2019, 8, e1900014.	7.6	45
57	Rapid assembling organ prototypes with controllable cell-laden multi-scale sheets. Bio-Design and Manufacturing, 2019, 2, 1-9.	7.7	21
58	Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Journal of Visualized Experiments, 2019, , .	0.3	16
59	Electroâ€Assisted Bioprinting of Low oncentration GelMA Microdroplets. Small, 2019, 15, e1804216.	10.0	92
60	3D Bioprinting: Airflow-Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle (Small 39/2018). Small, 2018, 14, 1870181.	10.0	4
61	Fiberâ€Based Mini Tissue with Morphologyâ€Controllable GelMA Microfibers. Small, 2018, 14, e1802187.	10.0	125
62	Vesselâ€onâ€a hip with Hydrogelâ€based Microfluidics. Small, 2018, 14, e1802368.	10.0	119
63	Three-Dimensional Coprinting of Liquid Metals for Directly Fabricating Stretchable Electronics. 3D Printing and Additive Manufacturing, 2018, 5, 195-203.	2.9	25
64	3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. International Journal of Pharmaceutics, 2018, 552, 91-98.	5.2	26
65	Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898.	2.6	21
66	Airflowâ€Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small, 2018, 14, e1802630.	10.0	71
67	3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels. ACS Biomaterials Science and Engineering, 2017, 3, 399-408.	5.2	181
68	An optimization approach for path planning of high-quality and uniform additive manufacturing. International Journal of Advanced Manufacturing Technology, 2017, 92, 651-662.	3.0	39
69	From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics with Integrated Continuous Perfusion. ACS Biomaterials Science and Engineering, 2017, 3, 601-607.	5.2	16
70	Fabrication of cerebral aneurysm simulator with a desktop 3D printer. Scientific Reports, 2017, 7, 44301.	3.3	47
71	Modeling and process planning for curved layer fused deposition. International Journal of Advanced Manufacturing Technology, 2017, 91, 273-285.	3.0	61
72	A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts. International Journal of Computer Integrated Manufacturing, 2017, 30, 1301-1315.	4.6	36

#	Article	IF	CITATIONS
73	Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design. ACS Biomaterials Science and Engineering, 2017, 3, 2606-2616.	5.2	29
74	Facial fabrication of paper-based flexible electronics with flash foam stamp lithography. Microsystem Technologies, 2017, 23, 4419-4426.	2.0	14
75	3D Printed Paper-Based Microfluidic Analytical Devices. Micromachines, 2016, 7, 108.	2.9	53
76	Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review. Electroanalysis, 2016, 28, 1658-1678.	2.9	241
77	3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Scientific Reports, 2016, 6, 21704.	3.3	91
78	Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects. Scientific Reports, 2016, 6, 34029.	3.3	56
79	Research on the printability of hydrogels in 3D bioprinting. Scientific Reports, 2016, 6, 29977.	3.3	428
80	Fabrication of shape controllable alginate microparticles based on drop-on-demand jetting. Journal of Sol-Gel Science and Technology, 2016, 77, 610-619.	2.4	31
81	Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 60-71.	3.1	74
82	Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Communications, 2015, 5, 631-639.	1.8	41
83	A facile and low-cost micro fabrication material: flash foam. Scientific Reports, 2015, 5, 13522.	3.3	13
84	3Dâ€Printed Atsttrinâ€Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement. Advanced Healthcare Materials, 2015, 4, 1701-1708.	7.6	60
85	Support generation for additive manufacturing based on sliced data. International Journal of Advanced Manufacturing Technology, 2015, 80, 2041-2052.	3.0	30
86	Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215.	11.4	486
87	45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Advances, 2015, 5, 102727-102735.	3.6	21
88	A parallel-based path generation method for fused deposition modeling. International Journal of Advanced Manufacturing Technology, 2015, 77, 927-937.	3.0	58
89	Printing 3D microfluidic chips with a 3D sugar printer. Microfluidics and Nanofluidics, 2015, 19, 447-456.	2.2	78
90	Micro structure fabrication with a simplified hot embossing method. RSC Advances, 2015, 5, 39138-39144.	3.6	24

#	Article	IF	CITATIONS
91	Fabrication of paper-based microfluidic analysis devices: a review. RSC Advances, 2015, 5, 78109-78127.	3.6	177
92	Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Advances, 2015, 5, 2694-2701.	3.6	65
93	A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography. RSC Advances, 2014, 4, 63860-63865.	3.6	35
94	Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Scientific Reports, 2014, 4, 6973.	3.3	179
95	Optimization of control parameters in micro hot embossing. Microsystem Technologies, 2008, 14, 325-329.	2.0	29