Ange-Line Bruel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646611/publications.pdf

Version: 2024-02-01

471509 345221 1,520 48 17 36 citations h-index g-index papers 48 48 48 3719 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High efficiency and clinical relevance of exome sequencing in the daily practice of neurogenetics. Journal of Medical Genetics, 2022, 59, 445-452.	3.2	6
2	ITSN1: a novel candidate gene involved in autosomal dominant neurodevelopmental disorder spectrum. European Journal of Human Genetics, 2022, 30, 111-116.	2.8	4
3	MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects. Human Genetics, 2022, 141, 65-80.	3.8	14
4	Accelerated genome sequencing with controlled costs for infants in intensive care units: a feasibility study in a French hospital network. European Journal of Human Genetics, 2022, 30, 567-576.	2.8	12
5	Copy number variants calling from WES data through eXome hidden Markov model (XHMM) identifies additional 2.5% pathogenic genomic imbalances smaller than 30Âkb undetected by array GH. Annals of Human Genetics, 2022, 86, 171-180.	0.8	6
6	Expanding the phenotype of <scp><i>HNRNPU</i></scp> â€related neurodevelopmental disorder with emphasis on seizure phenotype and review of literature. American Journal of Medical Genetics, Part A, 2022, 188, 1497-1514.	1.2	6
7	Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. American Journal of Human Genetics, 2022, 109, 601-617.	6.2	16
8	Toward clinical and molecular dissection of frontonasal dysplasia with facial skin polyps: From Pai syndrome to differential diagnosis through a series of 27 patients. American Journal of Medical Genetics, Part A, 2022, 188, 2036-2047.	1.2	1
9	Atypical phenotype of a patient with Bardet–Biedl syndrome type 4. Molecular Genetics & Genomic Medicine, 2022, 10, e1869.	1.2	2
10	Same performance of exome sequencing before and after fetal autopsy for congenital abnormalities: toward a paradigm shift in prenatal diagnosis?. European Journal of Human Genetics, 2022, , .	2.8	1
11	Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations. Journal of Medical Genetics, 2021, 58, 400-413.	3.2	18
12	Neuropsychological study in 19 French patients with <scp>Whiteâ€Sutton</scp> syndrome and <scp><i>POGZ</i></scp> mutations. Clinical Genetics, 2021, 99, 407-417.	2.0	10
13	DLG4-related synaptopathy: a new rare brain disorder. Genetics in Medicine, 2021, 23, 888-899.	2.4	16
14	<scp>Skrabanâ€Deardorff</scp> syndrome: Six new cases of <scp><i>WDR</i>26</scp> â€related disease and expansion of the clinical phenotype. Clinical Genetics, 2021, 99, 732-739.	2.0	4
15	Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. American Journal of Human Genetics, 2021, 108, 346-356.	6.2	30
16	TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Human Mutation, 2021, 42, 445-459.	2.5	26
17	Lossâ€ofâ€function variants in ARHGEF9 are associated with an Xâ€linked intellectual disability dominant disorder. Human Mutation, 2021, 42, 498-505.	2.5	1
18	Expanding the phenotype of <scp><i>ASXL3</i></scp> â€related syndrome: A comprehensive description of 45 unpublished individuals with inherited and de novo pathogenic variants in <scp><i>ASXL3</i></scp> . American Journal of Medical Genetics, Part A, 2021, 185, 3446-3458.	1.2	12

#	Article	IF	CITATIONS
19	The diagnostic rate of inherited metabolic disorders by exome sequencing in a cohort of 547 individuals with developmental disorders. Molecular Genetics and Metabolism Reports, 2021, 29, 100812.	1.1	2
20	Interest of exome sequencing trioâ€like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases. Molecular Genetics & Enomic Medicine, 2021, 9, e1836.	1.2	5
21	De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides–Baraitser syndrome. Genetics in Medicine, 2020, 22, 1838-1850.	2.4	31
22	Hydrothorax in fetal cases of Opitz G/ <scp>BBB</scp> diagnosis: Extending the phenotype?. Clinical Genetics, 2020, 98, 620-621.	2.0	1
23	Second-tier trio exome sequencing after negative solo clinical exome sequencing: an efficient strategy to increase diagnostic yield and decipher molecular bases in undiagnosed developmental disorders. Human Genetics, 2020, 139, 1381-1390.	3.8	8
24	Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability. Journal of Medical Genetics, 2020, 57, 466-474.	3.2	7
25	<scp>Nextâ€generation</scp> sequencing approaches and challenges in the diagnosis of developmental anomalies and intellectual disability. Clinical Genetics, 2020, 98, 433-444.	2.0	20
26	Kosaki overgrowth syndrome: A novel pathogenic variant in PDGFRB and expansion of the phenotype including cerebrovascular complications. Clinical Genetics, 2020, 98, 19-31.	2.0	17
27	Deciphering exome sequencing data: Bringing mitochondrial DNA variants to light. Human Mutation, 2019, 40, 2430-2443.	2.5	11
28	Increased diagnostic and new genes identification outcome using research reanalysis of singleton exome sequencing. European Journal of Human Genetics, 2019, 27, 1519-1531.	2.8	43
29	VariantÂrecurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense variants. Genetics in Medicine, 2019, 21, 2504-2511.	2.4	21
30	2.5 years' experience of GeneMatcher data-sharing: a powerful tool for identifying new genes responsible for rare diseases. Genetics in Medicine, 2019, 21, 1657-1661.	2.4	14
31	<i>NTU</i> â€related oralâ€facialâ€digital syndrome type VI: A confirmatory report. Clinical Genetics, 2018, 93, 1205-1209.	2.0	7
32	Unexpected diagnosis of a <i>SHH</i> nonsense variant causing a variable phenotype ranging from familial coloboma and Intellectual disability to isolated microcephaly. Clinical Genetics, 2018, 94, 182-184.	2.0	2
33	Truncating variants of the <i>DLG4</i> gene are responsible for intellectual disability with marfanoid features. Clinical Genetics, 2018, 93, 1172-1178.	2.0	19
34	A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis. American Journal of Human Genetics, 2018, 102, 995-1007.	6.2	49
35	Loss-of-Function Mutations in UNC45A Cause a Syndrome Associating Cholestasis, Diarrhea, Impaired Hearing, and Bone Fragility. American Journal of Human Genetics, 2018, 102, 364-374.	6.2	40
36	Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis. Genetics in Medicine, 2018, 20, 645-654.	2.4	146

#	Article	IF	CITATIONS
37	Okurâ€Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clinical Genetics, 2018, 93, 880-890.	2.0	30
38	The oculoauriculofrontonasal syndrome: Further clinical characterization and additional evidence suggesting a nontraditional mode of inheritance. American Journal of Medical Genetics, Part A, 2018, 176, 2740-2750.	1.2	6
39	De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation. Nature Genetics, 2018, 50, 1442-1451.	21.4	28
40	Autosomal recessive truncating $\langle i \rangle \langle scp \rangle MAB21L1 \langle scp \rangle \langle i \rangle$ mutation associated with a syndromic scrotal agenesis. Clinical Genetics, 2017, 91, 333-338.	2.0	15
41	Fifteen years of research on oralâ \in "facialâ \in "digital syndromes: from 1 to 16 causal genes. Journal of Medical Genetics, 2017, 54, 371-380.	3.2	85
42	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337
43	Expanding the clinical spectrum of recessive truncating mutations of KLHL7 to a Bohring-Opitz-like phenotype. Journal of Medical Genetics, 2017, 54, 830-835.	3.2	15
44	Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses. European Journal of Medical Genetics, 2017, 60, 595-604.	1.3	22
45	Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature. European Journal of Human Genetics, 2017, 25, 43-51.	2.8	44
46	The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nature Genetics, 2016, 48, 648-656.	21.4	119
47	Expanding the Phenotype Associated with NAA10â€Related Nâ€Terminal Acetylation Deficiency. Human Mutation, 2016, 37, 755-764.	2.5	70
48	The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nature Genetics, 2014, 46, 905-911.	21.4	121