
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646606/publications.pdf Version: 2024-02-01

ΥΛΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	11.8	553
2	New Understanding in Tuning Toughness of β-Polypropylene: The Role of β-Nucleated Crystalline Morphology. Macromolecules, 2009, 42, 9325-9331.	2.2	274
3	Control of Crystal Morphology in Poly(<scp>l</scp> -lactide) by Adding Nucleating Agent. Macromolecules, 2011, 44, 1233-1237.	2.2	203
4	The resistivity–strain behavior of conductive polymer composites: stability and sensitivity. Journal of Materials Chemistry A, 2014, 2, 17085-17098.	5.2	185
5	Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Materials Chemistry Frontiers, 2020, 4, 3130-3152.	3.2	161
6	Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter, 2011, 7, 6435.	1.2	137
7	The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment. RSC Advances, 2015, 5, 1910-1917.	1.7	85
8	Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2, 10048-10058.	5.2	82
9	Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. ACS Applied Materials & Interfaces, 2018, 10, 31655-31663.	4.0	82
10	Dependence of mechanical properties on βâ€form content and crystalline morphology for βâ€nucleated isotactic polypropylene. Polymers for Advanced Technologies, 2011, 22, 2044-2054.	1.6	74
11	Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks. ACS Applied Materials & Interfaces, 2017, 9, 29071-29081.	4.0	74
12	Stretchable and Healable Conductive Elastomer Based on PEDOT:PSS/Natural Rubber for Self-Powered Temperature and Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 14599-14611.	4.0	73
13	Preparation of high performance conductive polymer fibres from double percolated structure. Journal of Materials Chemistry, 2011, 21, 6401.	6.7	71
14	The preparation and properties of polystyrene/functionalized graphene nanocomposite foams using supercritical carbon dioxide. Polymer International, 2013, 62, 1077-1084.	1.6	64
15	Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polymer International, 2013, 62, 134-140.	1.6	62
16	A promising alternative to conventional polyethylene with poly(propylene carbonate) reinforced by graphene oxide nanosheets. Journal of Materials Chemistry, 2011, 21, 17627.	6.7	58
17	A Novel Concept for Highly Oriented Carbon Nanotube Composite Tapes or Fibres with High Strength and Electrical Conductivity. Macromolecular Materials and Engineering, 2009, 294, 749-755.	1.7	56
18	Towards high-performance poly(<scp>l</scp> -lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Advances, 2014, 4, 49374-49385.	1.7	52

#	Article	IF	CITATIONS
19	Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shishâ€kebab structure. Polymer International, 2012, 61, 252-258.	1.6	47
20	Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Advanced Composites and Hybrid Materials, 2022, 5, 238-249.	9.9	47
21	Improved thermal stability and mechanical properties of poly(propylene carbonate) by reactive blending with maleic anhydride. Journal of Applied Polymer Science, 2011, 120, 3565-3573.	1.3	46
22	Biomimetic Approach to Facilitate the High Filler Content in Free-Standing and Flexible Thermoelectric Polymer Composite Films Based on PVDF and Ag ₂ Se Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 51506-51516.	4.0	45
23	Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2012, 107, 733-743.	2.0	41
24	Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature. ACS Applied Materials & Interfaces, 2020, 12, 20998-21008.	4.0	40
25	Enhanced thermoelectric properties of PEDOT:PSS films via a novel two-step treatment. RSC Advances, 2015, 5, 105592-105599.	1.7	36
26	Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials. ACS Applied Materials & Interfaces, 2015, 7, 10178-10189.	4.0	34
27	Extensionâ€induced mechanical reinforcement in meltâ€spun fibers of polyamide 66/multiwalled carbon nanotube composites. Polymer International, 2011, 60, 1646-1654.	1.6	30
28	"Toolbox―for the Processing of Functional Polymer Composites. Nano-Micro Letters, 2022, 14, 35.	14.4	30
29	Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. Polymer International, 2011, 60, 1629-1637.	1.6	29
30	Progress in polyketone materials: blends and composites. Polymer International, 2018, 67, 1478-1487.	1.6	26
31	Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomaterialia, 2022, 140, 610-624.	4.1	25
32	Synergistic Reinforcement of Highly Oriented Poly(propylene) Tapes by Sepiolite Nanoclay. Macromolecular Materials and Engineering, 2010, 295, 37-47.	1.7	24
33	Strengthening and toughening of thermoplastic polyolefin elastomer using polypropyleneâ€grafted multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2011, 121, 2104-2112.	1.3	24
34	Dynamic percolation in highly oriented conductive networks formed with different carbon nanofillers. Colloid and Polymer Science, 2012, 290, 1393-1401.	1.0	24
35	Flexible and Giant Terahertz Modulation Based on Ultra-Strain-Sensitive Conductive Polymer Composites. ACS Applied Materials & Interfaces, 2020, 12, 9790-9796.	4.0	21
36	Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by <i>in situ</i> polymerization and filler surface functionalization. Journal of Applied Polymer Science, 2011, 120, 133-140.	1.3	18

#	Article	IF	CITATIONS
37	The effect of multilayered film structure on the dielectric properties of composites films based on P(VDF-HFP)/Ni(OH)2. Nanocomposites, 2019, 5, 36-48.	2.2	18
38	Oriented Poly(lactic acid)/Carbon Nanotube Composite Tapes with High Electrical Conductivity and Mechanical Properties. Macromolecular Materials and Engineering, 2015, 300, 1257-1267.	1.7	17
39	Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding. Journal of Physical Chemistry B, 2017, 121, 6257-6270.	1.2	17
40	Nanoscale Morphology, Interfacial Hydrogen Bonding, Confined Crystallization and Greatly Improved Toughness of Polyamide 12/Polyketone Blends. Nanomaterials, 2018, 8, 932.	1.9	17
41	Synergistic effects of βâ€modification and impact polypropylene copolymer on brittleâ€ductile transition of polypropylene random copolymer. Journal of Applied Polymer Science, 2013, 129, 3613-3622.	1.3	15
42	The effect of DBP of carbon black on the dynamic self-assembly in a polymer melt. RSC Advances, 2016, 6, 24843-24852.	1.7	15
43	Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing. Macromolecular Rapid Communications, 2017, 38, 1700444.	2.0	15
44	Composite Membrane of Poly(vinylidene fluoride) and 2D Ni(OH) ₂ Nanosheets for High-Performance Lithium-Ion Battery. ACS Applied Polymer Materials, 2022, 4, 960-970.	2.0	15
45	High speed injection molding of high density polyethylene — Effects of injection speed on structure and properties. Chinese Journal of Polymer Science (English Edition), 2011, 29, 456-464.	2.0	14
46	The interfacial enhancement of LLDPE/whisker composites via interfacial crystallization. Polymers for Advanced Technologies, 2012, 23, 431-440.	1.6	14
47	Combined effect of βâ€nucleating agent and processing melt temperature on the toughness of impact polypropylene copolymer. Polymer International, 2013, 62, 172-178.	1.6	13
48	Processing of Poly(propylene)/Carbon Nanotube Composites using scCO ₂ â€Assisted Mixing. Macromolecular Materials and Engineering, 2010, 295, 566-574.	1.7	12
49	Tailoring toughness of injection molded bar of polypropylene random copolymer through processing melt temperature. Polymer International, 2011, 60, 1705-1714.	1.6	11
50	Effect of surface wettability on transparency in different water conditions. Journal of Coatings Technology Research, 2013, 10, 641-647.	1.2	11
51	Ordered longâ€helical conformation of isotactic polypropylene obtained in constrained environment of nanoclay. Polymers for Advanced Technologies, 2011, 22, 1375-1380.	1.6	10
52	Morphology and mechanical properties of poly(ethyleneoctene) copolymers obtained by dynamic packing injection molding. Chinese Journal of Polymer Science (English Edition), 2012, 30, 603-612.	2.0	10
53	Preparation of high-performance cellulose composite membranes from LiOH/urea solvent system. Nanocomposites, 2019, 5, 49-60.	2.2	9
54	The variable role of clay on the crystallization behavior of DMDBS-nucleated polypropylene. Chinese Journal of Polymer Science (English Edition), 2011, 29, 732-740.	2.0	8

#	Article	IF	CITATIONS
55	The influence of blend composition and filler on the microstructure, crystallization, and mechanical behavior of polymer blends with multilayered structures. Nanocomposites, 2018, 4, 178-189.	2.2	6
56	Development of a processing method for carbon nanotubes modified fluorosilicone rubber with enhanced electrical, dielectric, and mechanical properties. Polymer-Plastics Technology and Materials, 2019, 58, 1495-1506.	0.6	6
57	Superior reinforcement in polyamide 1010/multiwalled carbon nanotube composites realized by highâ€rate drawing and incorporation of compatibilizer. Polymer International, 2012, 61, 1400-1410.	1.6	4
58	Acidâ€modified carbon nanotubes distribution and mechanical enhancement in polystyrene/elastomer blends. Polymer Engineering and Science, 2012, 52, 964-971.	1.5	4
59	Alternating multilayer structure of polyethylene/polypropylene blends obtained through injection molding. Journal of Applied Polymer Science, 2012, 124, 4452-4456.	1.3	3
60	Unusual rheological characteristics of polypropylene/organoclay nanocomposites in continuous cooling process. Journal of Applied Polymer Science, 2012, 125, E292.	1.3	2
61	Enhanced fracture energy during deformation through the construction of an alternating multilayered structure for polyolefin blends. Polymer International, 2018, 67, 1094-1102.	1.6	2
62	Balanced physical properties for thermoplastic silicone vulcanizateâ€based polymer composites containing functional filler. Polymer Composites, 2020, 41, 4307-4317.	2.3	2
63	Bioinspired Layer-by-Layer Poly(vinyl alcohol) - Graphene Oxide Nanocomposites. Materials Research Society Symposia Proceedings, 2012, 1410, 19.	0.1	Ο