Jose Luis Quero Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264657/publications.pdf

Version: 2024-02-01

52 papers 5,618 citations

30 h-index 51 g-index

52 all docs 52 docs citations

52 times ranked 7447 citing authors

#	Article	IF	CITATIONS
1	A Step-by-Step Guide to Initialize and Calibrate Landscape Models: A Case Study in the Mediterranean Mountains. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
2	Opportunities of super high-density olive orchard to improve soil quality: Management guidelines for application of pruning residues. Journal of Environmental Management, 2021, 293, 112785.	7.8	7
3	Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 2020, 57, 424-435.	4.0	35
4	Small-Scale Abiotic Factors Influencing the Spatial Distribution of Phytophthora cinnamomi under Declining Quercus ilex Trees. Forests, 2020, 11, 375.	2.1	11
5	Growth and physiological sapling responses of eleven Quercus ilex ecotypes under identical environmental conditions. Forest Ecology and Management, 2018, 415-416, 58-69.	3.2	14
6	Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 157-167.	2.8	15
7	Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology, 2018, 106, 242-253.	4.0	123
8	Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees - Structure and Function, 2018, 32, 497-510.	1.9	35
9	Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 2018, 24, 5642-5654.	9.5	100
10	Differences in the Response to Acute Drought and Phytophthora cinnamomi Rands Infection in Quercus ilex L. Seedlings. Forests, 2018, 9, 634.	2.1	40
11	Growth and Growth-Related Traits for a Range of Quercus Species Grown as Seedlings Under Controlled Conditions and for Adult Plants from the Field. Tree Physiology, 2017, , 393-417.	2.5	9
12	Differential impact of hotter drought on seedling performance of five ecologically distinct pine species. Plant Ecology, 2017, 218, 201-212.	1.6	35
13	Human impacts and aridity differentially alter soil <scp>N</scp> availability in drylands worldwide. Global Ecology and Biogeography, 2016, 25, 36-45.	5.8	33
14	Role of geographical provenance in the response of silver fir seedlings to experimental warming and drought. Tree Physiology, 2016, 36, 1236-1246.	3.1	24
15	Functional leaf and size traits determine the photosynthetic response of 10 dryland species to warming. Journal of Plant Ecology, 2016, 9, 773-783.	2.3	25
16	Potential impacts of aridity on structural and functional status of a southern Mediterranean Stipa tenacissima steppe. South African Journal of Botany, 2016, 103, 170-180.	2.5	10
17	Forest Inventories and habitat models to predictregeneration of Mediterranean woody species in forest plantations., 2016, 25, 6-21.		7
18	Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 2015, 18, 790-798.	6.4	149

#	Article	IF	CITATIONS
19	Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15684-15689.	7.1	728
20	Easy-to-make portable chamber for in situ CO ₂ exchange measurements on biological soil crusts. Photosynthetica, 2015, 53, 72-84.	1.7	13
21	Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in <scp>M</scp> editerranean drylands. New Phytologist, 2015, 206, 660-671.	7.3	167
22	Assessment of species diversity and state of Stipa tenacissima steppes. Turkish Journal of Botany, 2015, 39, 227-237.	1.2	6
23	Traits of neighbouring plants and space limitation determine intraspecific trait variability in semiâ€arid shrublands. Journal of Ecology, 2015, 103, 1647-1657.	4.0	39
24	Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biology, 2014, 20, 2697-2698.	9.5	8
25	Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global Ecology and Biogeography, 2014, 23, 1408-1416.	5.8	93
26	On the importance of topography, site quality, stock quality and planting date in a semiarid plantation: Feasibility of using low-density LiDAR. Ecological Engineering, 2014, 67, 25-38.	3.6	12
27	Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 164-173.	2.7	73
28	Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 2014, 41, 2307-2319.	3.0	76
29	Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. Biodiversity and Conservation, 2014, 23, 1787-1807.	2.6	60
30	Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502, 672-676.	27.8	733
31	Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biology, 2013, 19, 3835-3847.	9.5	230
32	Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. Journal of Ecology, 2013, 101, 637-649.	4.0	131
33	On the Importance of Shrub Encroachment by Sprouters, Climate, Species Richness and Anthropic Factors for Ecosystem Multifunctionality in Semi-arid Mediterranean Ecosystems. Ecosystems, 2013, 16, 1248-1261.	3.4	31
34	Aridity Modulates N Availability in Arid and Semiarid Mediterranean Grasslands. PLoS ONE, 2013, 8, e59807.	2.5	42
35	Response to Comment on "Plant Species Richness and Ecosystem Multifunctionality in Global Drylands― Science, 2012, 337, 155-155.	12.6	8
36	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	12.6	1,043

#	Article	IF	Citations
37	It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3062-3075.	4.0	243
38	Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia, 2012, 169, 293-305.	2.0	139
39	Evidence for plant traits driving specific drought resistance. A community field experiment. Environmental and Experimental Botany, 2012, 81, 55-61.	4.2	35
40	Linking stochasticity to determinism of woody plant recruitment in a mosaic landscape: A spatially explicit approach. Basic and Applied Ecology, 2011, 12, 161-171.	2.7	24
41	Is spatial structure the key to promote plant diversity in Mediterranean forest plantations?. Basic and Applied Ecology, 2011, 12, 251-259.	2.7	36
42	Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia, 2011, 166, 45-57.	2.0	117
43	Spatio-temporal heterogeneity effects on seedling growth and establishment in four Quercus species. Annals of Forest Science, 2011, 68, 1217-1232.	2.0	20
44	Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil and Tillage Research, 2010, 110, 108-114.	5.6	38
45	Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos, 2008, 117, 1683-1699.	2.7	136
46	Shifts in the regeneration niche of an endangered tree (Acer opalus ssp. granatense) during ontogeny: Using an ecological concept for application. Basic and Applied Ecology, 2008, 9, 635-644.	2.7	67
47	Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology, 2008, 35, 725.	2.1	68
48	Seedâ€mass effects in four Mediterranean <i>Quercus</i> species (Fagaceae) growing in contrasting light environments. American Journal of Botany, 2007, 94, 1795-1803.	1.7	112
49	Individual vs. population plastic responses to elevated CO2, nutrient availability, and heterogeneity: a microcosm experiment with co-occurring species. Plant and Soil, 2007, 296, 53-64.	3.7	17
50	Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytologist, 2006, 170, 819-834.	7.3	217
51	Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. Plant and Soil, 2005, 272, 11-27.	3.7	56
52	Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography, 2005, 28, 757-768.	4.5	125