Cesar Pascual Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the Effect of Scaling High-Aspect-Ratio ISFET with Physical Model Interface for Nano-Biosensing Application. Solid-State Electronics, 2022, 195, 108374.	0.8	7
2	Combining Chemical Functionalization and FinFET Geometry for Field Effect Sensors as Accessible Technology to Optimize pH Sensing. Chemosensors, 2021, 9, 20.	1.8	10
3	Comprehensive Analytical Modelling of an Absolute pH Sensor. Sensors, 2021, 21, 5190.	2.1	9
4	TCAD Simulations of High-Aspect-Ratio Nano-biosensor for Label-Free Sensing Application. , 2021, , .		1
5	High performance Fin-FET electrochemical sensor with high-k dielectric materials. Sensors and Actuators B: Chemical, 2020, 303, 127215.	4.0	20
6	Analytical techniques for multiplex analysis of protein biomarkers. Expert Review of Proteomics, 2020, 17, 257-273.	1.3	60
7	The influence of geometry and other fundamental challenges for bio-sensing with field effect transistors. Biophysical Reviews, 2019, 11, 757-763.	1.5	8
8	High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing. Nano Letters, 2019, 19, 2879-2887.	4.5	25
9	Single step fabrication of Silicon resistors on SOI substrate used as Thermistors. Scientific Reports, 2019, 9, 2835.	1.6	7
10	New opportunities for nanotechnology in the field of diagnostics based on proteomics. Frontiers in Nanoscience and Nanotechnology, 2019, 5, .	0.3	0
11	Electrochemical Control of pH in Nanoliter Volumes. Nano Letters, 2018, 18, 2807-2815.	4.5	15
12	Redox Active Self-Assembled Monolayer Functioning as a pH Actuator. Proceedings (mdpi), 2018, 2, .	0.2	0
13	Redox Active Polymer as a pH Actuator on a Re-Sealable Microfluidic Platform. Journal of Material Science & Engineering, 2018, 07, .	0.2	0
14	Influence of polymerisation on the reversibility of low-energy proton exchange reactions by Para-Aminothiolphenol. Scientific Reports, 2017, 7, 15401.	1.6	8
15	Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicology Letters, 2014, 224, 84-92.	0.4	64
16	Detection of Silver Nanoparticles inside Marine Diatom Thalassiosira pseudonana by Electron Microscopy and Focused Ion Beam. PLoS ONE, 2014, 9, e96078.	1.1	16
17	Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicology Letters, 2013, 217, 205-216.	0.4	297
18	Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an <i>i>in vitro</i> end point of carcinogenic potential. Nanotoxicology, 2013, 7, 221-233.	1.6	37

CESAR PASCUAL GARCIA

#	Article	IF	CITATIONS
19	Star-like gold nanoparticles as highly active substrate for surface enhanced Raman spectroscopy. , 2013, , .		0
20	Microscopic Analysis of the Interaction of Gold Nanoparticles with Cells of the Innate Immune System. Scientific Reports, 2013, 3, .	1.6	21
21	Silver nanoparticles induce cytotoxicity, but not cell transformation or genotoxicity on Balb3T3 mouse fibroblasts. BioNanoMaterials, 2013, 14, 49-60.	1.4	8
22	Gold Nanoparticles Downregulate Interleukinâ€1βâ€Induced Proâ€Inflammatory Responses. Small, 2013, 9, 472-477.	5.2	165
23	Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing. Analyst, The, 2012, 137, 5251.	1.7	4
24	Effects of Silver Nanoparticles in Diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp Environmental Science & Technology, 2012, 46, 11336-11344.	4.6	82
25	Microwave-assisted synthesis of silver nanoprisms/nanoplates using a "modified polyol process― Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 145-151.	2.3	67
26	Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. Journal of Chromatography A, 2011, 1218, 4234-4239.	1.8	95
27	Chemical modification and patterning of self assembled monolayers using scanning electron and ion-beam lithography. Microelectronic Engineering, 2011, 88, 1948-1950.	1.1	1
28	Colony Forming Efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicology Letters, 2010, 197, 29-37.	0.4	52
29	Josephson current in nanofabricated V/Cu/V mesoscopic junctions. Applied Physics Letters, 2009, 94, 132508.	1.5	24
30	Probing collective modes of correlated states of few electrons in semiconductor quantum dots. Solid State Communications, 2009, 149, 1436-1442.	0.9	2
31	Recombination-Limited Energy Relaxation in a Bardeen-Cooper-Schrieffer Superconductor. Physical Review Letters, 2009, 102, 017003.	2.9	85
32	Correlated states and spin transitions in nanofabricated AlGaAs/GaAs few-electron quantum dots probed by inelastic light scattering. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1867-1869.	1.3	2
33	A molecular state of correlated electrons in a quantum dot. Nature Physics, 2008, 4, 467-471.	6.5	70
34	Optical Control of Energy-Level Structure of Few Electrons in AlGaAs/GaAs Quantum Dots. Nano Letters, 2008, 8, 577-581.	4.5	5
35	Manipulation and Generation of Supercurrent in Out-of-Equilibrium Josephson Tunnel Nanojunctions. Physical Review Letters, 2008, 101, 077004.	2.9	33
36	Out-Of-Equilibrium Josephson Effect in Superconducting Tunnel Nanojunctions. , 2008, , .		0

3

CESAR PASCUAL GARCIA

#	Article	IF	CITATIONS
37	Photoluminescence of individual doped GaAsâ^•AlGaAs nanofabricated quantum dots. Applied Physics Letters, 2007, 90, 181902.	1.5	20
38	Probing spin states in AlGaAs/GaAs few-electron quantum dots by inelastic light scattering. AIP Conference Proceedings, 2007, , .	0.3	0
39	Spin excitations in few-electrons AlGaAs/GaAs quantum dots probed by inelastic light scattering. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 304-307.	1.3	3
40	Observation of low-lying excitations of electrons in coupled quantum dots. Applied Physics Letters, 2006, 88, 113105.	1.5	4
41	Evidence of Correlation in Spin Excitations of Few-Electron Quantum Dots. Physical Review Letters, 2005, 95, 266806.	2.9	47
42	Optical study of the one-dimensional electron gas in cleaved-edge-overgrown semiconductor quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 722-725.	1.3	1
43	1.26 μ4m intersubband transitions in In0.3Ga0.7As/AlAs quantum wells. Applied Physics Letters, 2000, 77, 3767-3769.	1.5	21
44	Carrier and light trapping in graded quantum-well laser structures. Applied Physics Letters, 2000, 76, 3540-3542.	1.5	8
45	Universal control of protons concentration using electrochemically generated acid compatible with miniaturization. Nanoscale Advances, 0, , .	2.2	2