Gaoshan Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2646269/gaoshan-huang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 56 114 3,491 g-index h-index citations papers 3,967 124 7.2 5.44 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
114	Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. <i>Small</i> , 2009 , 5, 1688-92	11	548
113	Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. <i>Advanced Materials</i> , 2008 , 20, 4085-4090	24	537
112	Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. <i>Lab on A Chip</i> , 2009 , 9, 263-8	7.2	116
111	Thinning and shaping solid films into functional and integrative nanomembranes. <i>Advanced Materials</i> , 2012 , 24, 2517-46	24	94
110	Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment. <i>Nanoscale</i> , 2011 , 3, 5083-9	7.7	93
109	Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications. <i>ACS Nano</i> , 2010 , 4, 3123-30	16.7	88
108	Mechanical Self-Assembly of a Strain-Engineered Flexible Layer: Wrinkling, Rolling, and Twisting. <i>Physical Review Applied</i> , 2016 , 5,	4.3	85
107	Optical microcavities with tubular geometry: properties and applications. <i>Laser and Photonics Reviews</i> , 2014 , 8, 521-547	8.3	82
106	Tubular Micro/Nanomachines: From the Basics to Recent Advances. <i>Advanced Functional Materials</i> , 2018 , 28, 1705872	15.6	80
105	Dry-released nanotubes and nanoengines by particle-assisted rolling. <i>Advanced Materials</i> , 2013 , 25, 371	15⊵2∤1	71
104	GrBeisen parameter of the G mode of strained monolayer graphene. <i>Physical Review B</i> , 2011 , 83,	3.3	68
103	Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17441		63
102	Material considerations and locomotive capability in catalytic tubular microengines. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6519		56
101	Optical properties of rolled-up tubular microcavities from shaped nanomembranes. <i>Applied Physics Letters</i> , 2009 , 94, 141901	3.4	53
100	Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors. <i>Science Advances</i> , 2016 , 2, e1600027	14.3	52
99	Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7227-7235	13	48
98	Giant persistent photoconductivity in rough silicon nanomembranes. <i>Nano Letters</i> , 2009 , 9, 3453-9	11.5	47

(2018-2010)

97	Morphological Differentiation of Neurons on Microtopographic Substrates Fabricated by Rolled-Up Nanotechnology. <i>Advanced Engineering Materials</i> , 2010 , 12, B558-B564	3.5	47
96	ZnO Nanomembrane/Expanded Graphite Composite Synthesized by Atomic Layer Deposition as Binder-Free Anode for Lithium Ion Batteries. <i>ACS Applied Materials & Description of the Expanded Section 2017</i> , 9, 38522-385	529 ⁵	44
95	Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing. <i>Nanoscale</i> , 2014 , 6, 13646-50	7.7	42
94	Geometry Design, Principles and Assembly of Micromotors. <i>Micromachines</i> , 2018 , 9,	3.3	41
93	Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D. <i>Small</i> , 2018 , 14, e1703665	11	40
92	Hierarchical nanoporous microtubes for high-speed catalytic microengines. <i>NPG Asia Materials</i> , 2014 , 6, e94-e94	10.3	38
91	Superelastic metal microsprings as fluidic sensors and actuators. <i>Lab on A Chip</i> , 2012 , 12, 2322-8	7.2	36
90	Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes. <i>Optics Express</i> , 2012 , 20, 18555-67	3.3	36
89	Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy. <i>Scientific Reports</i> , 2015 , 5, 1507	1 2 4.9	34
88	Atomic layer deposition synthesized ZnO nanomembranes: A facile route towards stable supercapacitor electrode for high capacitance. <i>Journal of Power Sources</i> , 2020 , 451, 227740	8.9	32
87	Self-Rolling of Oxide Nanomembranes and Resonance Coupling in Tubular Optical Microcavity. <i>Advanced Optical Materials</i> , 2016 , 4, 936-942	8.1	30
86	Origin of the high p-doping in F intercalated graphene on SiC. Applied Physics Letters, 2011, 99, 053117	3.4	28
85	Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. <i>ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	27
84	Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants. <i>Environmental Science: Nano</i> , 2020 , 7, 656-664	7.1	27
83	Small-scale heat detection using catalytic microengines irradiated by laser. <i>Nanoscale</i> , 2013 , 5, 1345-52	7.7	26
82	Fabrication and stimuli-responsive behavior of flexible micro-scrolls. <i>Soft Matter</i> , 2012 , 8, 7103	3.6	25
81	Automatic molecular collection and detection by using fuel-powered microengines. <i>Nanoscale</i> , 2016 , 8, 9141-5	7.7	22
80	Sandwiched porous C/ZnO/porous C nanosheet battery anodes with a stable solid-electrolyte interphase for fast and long cycling. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22870-22878	13	22

79	High-Temperature-Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes. <i>Advanced Functional Materials</i> , 2018 , 28, 1801448	15.6	22
78	Atomic Layer Deposition Inducing Integration of Co, N Codoped Carbon Sphere on 3D Foam with Hierarchically Porous Structures for Flexible Hydrogen Producing Device. <i>Advanced Functional Materials</i> , 2019 , 29, 1906365	15.6	21
77	Exploring Rolled-up AuAg Bimetallic Microtubes for Surface-Enhanced Raman Scattering Sensor. Journal of Physical Chemistry C, 2012 , 116, 25504-25508	3.8	21
76	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. <i>Nanoscale Research Letters</i> , 2012 , 7, 268	5	20
75	TiO Nanomembranes Fabricated by Atomic Layer Deposition for Supercapacitor Electrode with Enhanced Capacitance. <i>Nanoscale Research Letters</i> , 2019 , 14, 92	5	19
74	Hydrogel micromotors with catalyst-containing liquid core and shell. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 214004	1.8	19
73	Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. <i>Nanotechnology</i> , 2015 , 26, 364001	3.4	18
7 2	Helices in micro-world: Materials, properties, and applications. <i>Journal of Materiomics</i> , 2015 , 1, 296-306	6.7	17
71	Liquid sensing capability of rolled-up tubular optical microcavities: a theoretical study. <i>Lab on A Chip</i> , 2012 , 12, 3798-802	7.2	17
70	Novel Flexible Material-Based Unobtrusive and Wearable Body Sensor Networks for Vital Sign Monitoring. <i>IEEE Sensors Journal</i> , 2019 , 19, 8502-8513	4	17
69	Electromagnetic wave propagation in a rolled-up tubular microcavity. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2758-2770	7.1	16
68	Grating-structured metallic microsprings. <i>Nanoscale</i> , 2014 , 6, 9428-35	7.7	16
67	Wrinkled Single-Crystalline Germanium Nanomembranes for Stretchable Photodetectors. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 1985-1990	2.9	16
66	Optical resonances in tubular microcavities with subwavelength wall thicknesses. <i>Applied Physics Letters</i> , 2011 , 99, 211104	3.4	16
65	Atomic layerdeposited nanostructures and their applications in energy storage and sensing. Journal of Materials Research, 2020 , 35, 701-719	2.5	16
64	Local-illuminated ultrathin silicon nanomembranes with photovoltaic effect and negative transconductance. <i>Advanced Materials</i> , 2010 , 22, 3667-71	24	15
63	2D-material-integrated whispering-gallery-mode microcavity. <i>Photonics Research</i> , 2019 , 7, 905	6	15
62	Rolled-up Nanotechnology: Materials Issue and Geometry Capability. <i>Advanced Materials Technologies</i> , 2018 , 4, 1800486	6.8	15

(2021-2019)

61	Tubular catalytic micromotors in transition from unidirectional bubble sequences to more complex bidirectional motion. <i>Applied Physics Letters</i> , 2019 , 114, 033701	3.4	14
60	Uniaxial and tensile strained germanium nanomembranes in rolled-up geometry by polarized Raman scattering spectroscopy. <i>AIP Advances</i> , 2015 , 5, 037115	1.5	14
59	Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edge-Cutting Transfer and Printing for van der Waals Heterojunctions. <i>Small</i> , 2015 , 11, 4140-8	11	14
58	Three dimensional strain distribution of wrinkled silicon nanomembranes fabricated by rolling-transfer technique. <i>Applied Physics Letters</i> , 2013 , 103, 264102	3.4	14
57	Rolled-Up Monolayer Graphene Tubular Micromotors: Enhanced Performance and Antibacterial Property. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2479-2484	4.5	13
56	Nickel nanograins anchored on a carbon framework for an efficient hydrogen evolution electrocatalyst and a flexible electrode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3499-3508	13	13
55	Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. <i>Advanced Materials</i> , 2021 , 33, e2007465	24	12
54	Rolled-Up Ag-SiOx Hyperbolic Metamaterials for Surface-Enhanced Raman Scattering. <i>Plasmonics</i> , 2015 , 10, 949-954	2.4	11
53	Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. <i>Science Advances</i> , 2020 , 6, eaaz6511	14.3	11
52	Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion. <i>Nanoscale Research Letters</i> , 2016 , 11, 289	5	11
51	Light-emitting properties of a strain-tuned microtube containing coupled quantum wells. <i>Applied Physics Letters</i> , 2013 , 102, 041109	3.4	11
50	Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 26119-26129	13	11
49	Exceptional transport property in a rolled-up germanium tube. <i>Applied Physics Letters</i> , 2017 , 110, 11210)4 .4	10
48	Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages. <i>Nanoscale</i> , 2017 , 9, 18590-18596	7.7	10
47	Sonication-Triggered Rolling of Janus Porous Nanomembranes for Electrochemical Sensing of Dopamine and Ascorbic Acid. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10032-10039	5.6	10
46	Nanogranular SiO2 proton gated silicon layer transistor mimicking biological synapses. <i>Applied Physics Letters</i> , 2016 , 108, 253503	3.4	10
45	Flexible Transient Phototransistors by Use of Wafer-Compatible Transferred Silicon Nanomembranes. <i>Small</i> , 2018 , 14, e1802985	11	10
44	Atomic layer deposition-assisted fabrication of 3D Co-doped carbon framework for sensitive enzyme-free lactic acid sensor. <i>Chemical Engineering Journal</i> , 2021 , 417, 129285	14.7	10

43	Atomic layer deposition-induced integration of N-doped carbon particles on carbon foam for flexible supercapacitor. <i>Journal of Materiomics</i> , 2020 , 6, 209-215	6.7	9
42	Carbon dioxide bubble-propelled microengines in carbonated water and beverages. <i>Chemical Communications</i> , 2018 , 54, 5692-5695	5.8	9
41	Schottky contact on ultra-thin silicon nanomembranes under light illumination. <i>Nanotechnology</i> , 2014 , 25, 485201	3.4	9
40	Atomic Layer Deposition-Derived Nanomaterials: Oxides, Transition Metal Dichalcogenides, and Metal Drganic Frameworks. <i>Chemistry of Materials</i> , 2020 , 32, 9056-9077	9.6	9
39	Influence of reactive surface groups on the deposition of oxides thin film by atomic layer deposition. <i>Surface and Coatings Technology</i> , 2017 , 329, 149-154	4.4	8
38	Self-rolled TiO2 microscroll/graphene composite for electrochemical dopamine sensing. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 337-342	3.6	8
37	Atomic layer deposition of TiO2-nanomembrane-based photocatalysts with enhanced performance. <i>AIP Advances</i> , 2016 , 6, 115113	1.5	8
36	Co9S8 Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 1776-1785	5.6	8
35	Multifunctional Nanocracks in Silicon Nanomembranes by Notch-Assisted Transfer Printing. <i>ACS Applied Materials & District Materials & </i>	9.5	7
34	Cycling-Induced Capacity Increase of Graphene Aerogel/ZnO Nanomembrane Composite Anode Fabricated by Atomic Layer Deposition. <i>Nanoscale Research Letters</i> , 2019 , 14, 69	5	7
33	Strongly polarized quantum well infrared photodetector with metallic cavity for narrowband wavelength selective detection. <i>Applied Physics Letters</i> , 2020 , 116, 161107	3.4	7
32	Light-controlled two-dimensional TiO plate micromotors RSC Advances, 2019, 9, 29433-29439	3.7	7
31	Thermal-controlled releasing and assembling of functional nanomembranes through polymer pyrolysis. <i>Nanotechnology</i> , 2019 , 30, 354001	3.4	6
30	Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes. <i>Nanotechnology</i> , 2018 , 29, 42LT02	3.4	6
29	Silicon nanomembrane-based near infrared phototransistor with positive and negative photodetections. <i>Nanoscale</i> , 2019 , 11, 16844-16851	7.7	6
28	Atmospheric growth and strong visible luminescence of anatase titanium oxide films with various orientations. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6708-6713	13	6
27	Modification and Resonance Tuning of Optical Microcavities by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2014 , 20, 103-111		6
26	Study of roughness evolution and layer stacking faults in short-period atomic layer deposited HfO2/Al2O3 multilayers. <i>Journal of Applied Physics</i> , 2011 , 109, 063524	2.5	6

(2018-2019)

25	Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2431-2434	4.5	5	
24	Ultrathin Silicon Nanomembrane in a Tubular Geometry for Enhanced Photodetection. <i>Advanced Optical Materials</i> , 2019 , 7, 1900823	8.1	5	
23	Dynamic curvature control of rolled-up metal nanomembranes activated by magnesium. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12983		5	
22	Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors. Journal of Semiconductors, 2017 , 38, 054006	2.3	4	
21	Self-assembled dielectric microsphere as light concentrators for ultrathin-silicon-based photodetectors with broadband enhancement. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1700295	1.6	4	
20	Sponge-templated production of ultra-thin ZnO nanosheets for printed ultraviolet photodetectors. <i>Applied Physics Letters</i> , 2019 , 115, 122106	3.4	4	
19	Strain-modulated photoelectric properties of self-rolled GaAs/Al0.26Ga0.74As quantum well nanomembrane. <i>Applied Physics Express</i> , 2019 , 12, 065003	2.4	4	
18	A simple method to fabricate metal-oil micromachines. SN Applied Sciences, 2020, 2, 1	1.8	3	
17	Single Whispering Gallery Mode in Mesh-Structured Tubular Microcavity with Tunable Axial Confinement. <i>Advanced Photonics Research</i> , 2021 , 2, 2000163	1.9	3	
16	Schottky Barrier Modulation in Surface Nanoroughened Silicon Nanomembranes for High-Performance Optoelectronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41497-41503	9.5	3	
15	Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging. <i>Micromachines</i> , 2021 , 12,	3.3	3	
14	Parameters Optimization of Catalytic Tubular Nanomembrane-Based Oxygen Microbubble Generator. <i>Micromachines</i> , 2020 , 11,	3.3	2	
13	Excitation Position Sensitive Upconversion Emission of Lanthanide Ions Doped ENaYF4 Single Microcrystals. <i>ChemNanoMat</i> , 2018 , 4, 348-352	3.5	2	
12	Area-selective and precise assembly of metal organic framework particles by atomic layer deposition induction and its application for ultra-sensitive dopamine sensor. <i>Nano Today</i> , 2022 , 42, 101	3 47 79	2	
11	Structural Coloration by Internal Reflection and Interference in Hydrogel Microbubbles and Their Precursors. <i>Advanced Optical Materials</i> , 2021 , 9, 2100259	8.1	2	
10	Energy band modulation of GaAs/Al0.26Ga0.74As quantum well in 3D self-assembled nanomembranes. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2019 , 383, 2938-294	12 ^{2.3}	1	
9	Nanostructured WO3/BiVO4 heterojunction films embedded with Au nanoparticles for efficient photoelectrochemical water splitting. <i>MRS Communications</i> , 2021 , 11, 295-301	2.7	1	
8	Transient Electronics: High-Temperature-Triggered Thermally Degradable Electronics Based on Flexible Silicon Nanomembranes (Adv. Funct. Mater. 45/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870323	15.6	1	

7	Local Cracking-Induced Scalable Flexible Silicon Nanogaps for Dynamically Tunable Surface Enhanced Raman Scattering Substrates. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100661	4.6	1
6	Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors <i>RSC Advances</i> , 2020 , 10, 36526-36530	3.7	O
5	Integration of a Metal-Organic Framework Film with a Tubular Whispering-Gallery-Mode Microcavity for Effective CO Sensing. <i>ACS Applied Materials & Description of Action 2018</i> , 13, 58104-58113	9.5	О
4	Growth and stress analyses of vanadium dioxide nanomembranes for controllable rolling. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 455105	3	O
3	Effects of Voltage and Temperature on Photoelectric Properties of Rolled-Up Quantum Well Nanomembranes. <i>Journal of Electronic Materials</i> , 2021 , 50, 3111-3115	1.9	О
2	Enhanced Evanescent Field Coupling of Smart Particles in Tubular Optical Microcavity for Sensing Application. <i>Advanced Optical Materials</i> , 2022 , 10, 2102158	8.1	O
1	Single Whispering Gallery Mode in Mesh-Structured Tubular Microcavity with Tunable Axial Confinement. <i>Advanced Photonics Research</i> , 2021 , 2, 2170014	1.9	