Chris Ka Pun Mok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the immunogenicity of <scp>BNT162b2</scp> and <scp>CoronaVac COVID</scp> â€19 vaccines in Hong Kong. Respirology, 2022, 27, 301-310.	1.3	127
2	Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nature Medicine, 2022, 28, 486-489.	15.2	305
3	A Randomized Clinical Trial Using CoronaVac or BNT162b2 Vaccine as a Third Dose in Adults Vaccinated with Two Doses of CoronaVac. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 844-847.	2.5	36
4	Superspreading potential of COVID-19 outbreak seeded by Omicron variants of SARS-CoV-2 in Hong Kong. Journal of Travel Medicine, 2022, 29, .	1.4	17
5	Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk. Emerging Infectious Diseases, 2022, 28, 977-985.	2.0	6
6	Surrogate neutralization responses following severe acute respiratory syndrome coronavirus 2 vaccination in people with HIV: comparison between inactivated and mRNA vaccine. Aids, 2022, 36, 1255-1264.	1.0	13
7	SARS-CoV-2 Omicron variant BA.2 neutralisation in sera of people with Comirnaty or CoronaVac vaccination, infection or breakthrough infection, Hong Kong, 2020 to 2022. Eurosurveillance, 2022, 27, .	3.9	28
8	SARS-CoV-2 accessory proteins reveal distinct serological signatures in children. Nature Communications, 2022, 13, .	5.8	22
9	Rapid evaluation of COVID-19 vaccine effectiveness against symptomatic infection with SARS-CoV-2 variants by analysis of genetic distance. Nature Medicine, 2022, 28, 1715-1722.	15.2	29
10	Neutralizing Antibody Response to Sarbecovirus Is Delayed in Sequential Heterologous Immunization. Viruses, 2022, 14, 1382.	1.5	2
11	T-cell responses to MERS coronavirus infection in people with occupational exposure to dromedary camels in Nigeria: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 385-395.	4.6	50
12	Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Central Science, 2021, 7, 792-802.	5.3	59
13	Dynamics of B cell repertoires and emergence of cross-reactive responses in patients with different severities of COVID-19. Cell Reports, 2021, 35, 109173.	2.9	46
14	Homologous and heterologous serological response to the Nâ€ŧerminal domain of SARSâ€CoVâ€2 in humans and mice. European Journal of Immunology, 2021, 51, 2296-2305.	1.6	7
15	Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
16	Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nature Immunology, 2021, 22, 1416-1427.	7.0	84
17	Tracking the Transcription Kinetic of SARS-CoV-2 in Human Cells by Reverse Transcription-Droplet Digital PCR. Pathogens, 2021, 10, 1274.	1.2	3
18	XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Frontiers in Immunology, 2021, 12, 761250.	2.2	7

CHRIS KA PUN MOK

#	Article	IF	CITATIONS
19	Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science, 2020, 369, 1210-1220.	6.0	947
20	ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nature Immunology, 2020, 21, 1293-1301.	7.0	198
21	Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Reports, 2020, 31, 107725.	2.9	353
22	COVIDâ€19 vaccines: Knowing the unknown. European Journal of Immunology, 2020, 50, 939-943.	1.6	28
23	A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 2020, 368, 630-633.	6.0	1,379
24	Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. Journal of Ethnopharmacology, 2020, 253, 112671.	2.0	21
25	Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerging Microbes and Infections, 2020, 9, 246-255.	3.0	46
26	Kinetics of viral load and antibody response in relation to COVID-19 severity. Journal of Clinical Investigation, 2020, 130, 5235-5244.	3.9	501
27	Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility. Cell Host and Microbe, 2019, 25, 836-844.e5.	5.1	45
28	Risk Assessment of the Tropism and Pathogenesis of the Highly Pathogenic Avian Influenza A/H7N9 Virus Using Ex Vivo and In Vitro Cultures of Human Respiratory Tract. Journal of Infectious Diseases, 2019, 220, 578-588.	1.9	9
29	Influenza A(H5N1) Virus Infection in a Child With Encephalitis Complicated by Obstructive Hydrocephalus. Clinical Infectious Diseases, 2018, 66, 136-139.	2.9	9
30	The D253N Mutation in the Polymerase Basic 2 Gene in Avian Influenza (H9N2) Virus Contributes to the Pathogenesis of the Virus in Mammalian Hosts. Virologica Sinica, 2018, 33, 531-537.	1.2	9
31	Tree shrew as a new animal model to study the pathogenesis of avian influenza (H9N2) virus infection. Emerging Microbes and Infections, 2018, 7, 1-11.	3.0	22
32	Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. Journal of Medicinal Chemistry, 2018, 61, 5187-5198.	2.9	22
33	Clinical Correlations of Transcriptional Profile in Patients Infected With Avian Influenza H7N9 Virus. Journal of Infectious Diseases, 2018, 218, 1238-1248.	1.9	18
34	Serum Cytokine Profiles in Patients with Dengue Fever at the Acute Infection Phase. Disease Markers, 2018, 2018, 1-8.	0.6	27
35	Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. MSphere, 2018, 3, .	1.3	42
36	Tropism and innate host responses of influenza A/H5N6 virus: an analysis of <i>exÂvivo</i> and <i>in vitro</i> cultures of the human respiratory tract. European Respiratory Journal, 2017, 49, 1601710.	3.1	27

Chris Ka Pun Mok

#	Article	IF	CITATIONS
37	H7N9 Influenza A Virus Exhibits Importin-α7–Mediated Replication in the Mammalian Respiratory Tract. American Journal of Pathology, 2017, 187, 831-840.	1.9	15
38	The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage. Scientific Reports, 2017, 7, 2352.	1.6	13
39	Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China. Emerging Infectious Diseases, 2017, 23, 1332-1340.	2.0	146
40	Sequential Mycoplasma pneumoniae pneumonia and Chromobacterium violaceum skin abscess in a pediatric patient. Journal of Infection in Developing Countries, 2017, 11, 656-661.	0.5	2
41	PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species. PLoS ONE, 2016, 11, e0162163.	1.1	27
42	Population seroprevalence of antibody to influenza A(H7N9)Âvirus, Guangzhou, China. BMC Infectious Diseases, 2016, 16, 632.	1.3	13
43	Targeting host calpain proteases decreases influenza A virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L689-L699.	1.3	17
44	Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Scientific Reports, 2016, 6, 35401.	1.6	18
45	Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3. Scientific Reports, 2016, 6, 28593.	1.6	29
46	Clinical and epidemiological features of the 2014 large-scale dengue outbreak in Guangzhou city, China. BMC Infectious Diseases, 2016, 16, 102.	1.3	30
47	Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerging Infectious Diseases, 2015, 21, 2268-2271.	2.0	30
48	Clinical, Virological and Immunological Features from Patients Infected with Re-Emergent Avian-Origin Human H7N9 Influenza Disease of Varying Severity in Guangdong Province. PLoS ONE, 2015, 10, e0117846.	1.1	28
49	Surveillance for Seasonal Influenza Virus Prevalence in Hospitalized Children with Lower Respiratory Tract Infection in Guangzhou, China during the Post-Pandemic Era. PLoS ONE, 2015, 10, e0120983.	1.1	11
50	Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases, 2015, 21, 2278-2280.	2.0	37
51	Human Infection with a Novel Avian Influenza A(H5N6) Virus. New England Journal of Medicine, 2015, 373, 487-489.	13.9	159
52	IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4 ⁺ T cells for heterosubtypic protection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5676-5681.	3.3	46
53	Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts. Journal of Virology, 2014, 88, 3568-3576.	1.5	146
54	Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Research, 2014, 106, 95-104.	1.9	34

Chris Ka Pun Mok

#	Article	IF	CITATIONS
55	Use of fractional factorial design to study the compatibility of viral ribonucleoprotein gene segments of human H7N9 virus and circulating human influenza subtypes. Influenza and Other Respiratory Viruses, 2014, 8, 580-584.	1.5	2
56	Influenza A viruses with different amino acid residues at PB2-627 display distinct replication properties in vitro and in vivo : Revealing the sequence plasticity of PB2-627 position. Virology, 2014, 468-470, 545-555.	1.1	18
57	Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. Lancet Respiratory Medicine,the, 2013, 1, 534-542.	5.2	88
58	Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice. MBio, 2013, 4, .	1.8	68
59	Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. Journal of General Virology, 2012, 93, 2337-2345.	1.3	36
60	Amino Acid Residues 253 and 591 of the PB2 Protein of Avian Influenza Virus A H9N2 Contribute to Mammalian Pathogenesis. Journal of Virology, 2011, 85, 9641-9645.	1.5	65
61	Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. Journal of General Virology, 2007, 88, 1275-1280.	1.3	68
62	p38 Mitogen-Activated Protein Kinase-Dependent Hyperinduction of Tumor Necrosis Factor Alpha Expression in Response to Avian Influenza Virus H5N1. Journal of Virology, 2005, 79, 10147-10154.	1.5	125
63	Dynamics of B-Cell Repertoires and Emergence of Cross-Reactive Responses in COVID-19 Patients with Different Disease Severity. SSRN Electronic Journal, 0, , .	0.4	2