G P Kopitsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon cryogel preparation and characterization. Diamond and Related Materials, 2022, 121, 108727.	1.8	5
2	Morphology and Structure of a Charge of Detonation Nanodiamond Doped with Boron. Glass Physics and Chemistry, 2022, 48, 43-49.	0.2	1
3	Novel biocompatible Cu2+-containing composite hydrogels based on bacterial cellulose and poly-1-vinyl-1,2,4-triazole. Smart Materials in Medicine, 2022, 3, 382-389.	3.7	7
4	Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications. Journal of Supercritical Fluids, 2021, 169, 105099.	1.6	12
5	The Structure and Properties of TiO2 Nanopowders for Use in Agricultural Technologies. Biointerface Research in Applied Chemistry, 2021, 11, 12285-12300.	1.0	4
6	Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles. Russian Journal of Inorganic Chemistry, 2021, 66, 225-236.	0.3	2
7	Magnetic Neutron Scattering in Reduced Graphene Oxide. JETP Letters, 2021, 113, 384-388.	0.4	2
8	Hydrophobization of organic resorcinol-formaldehyde aerogels by fluoroacylation. Journal of Fluorine Chemistry, 2021, 244, 109742.	0.9	8
9	SiO2–TiO2 Binary Aerogels: A Small-Angle Scattering Study. Russian Journal of Inorganic Chemistry, 2021, 66, 874-882.	0.3	7
10	Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains. Geosciences (Switzerland), 2021, 11, 342.	1.0	2
11	Chemoresistive gas-sensitive ZnO/Pt nanocomposites films applied by microplotter printing with increased sensitivity to benzene and hydrogen. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115233.	1.7	22
12	Aqueous chemical synthesis of iron oxides magnetic nanoparticles of different morphology and mesostructure. Ceramics International, 2021, 47, 28866-28873.	2.3	9
13	The first amorphous and crystalline yttrium lactate: synthesis and structural features. RSC Advances, 2021, 11, 30195-30205.	1.7	3
14	Nanodiamond Batch Enriched with Boron: Properties and Prospects for Use in Agriculture. Biointerface Research in Applied Chemistry, 2021, 12, 6134-6147.	1.0	2
15	Sol-Gel Synthesis and Structure of Nanocomposites Based on Tetraethoxysilane and Boron Compounds. Glass Physics and Chemistry, 2021, 47, S48-S62.	0.2	2
16	Synthesis of Iron Oxide Magnetic Nanoparticles and Their Effect on Growth, Productivity, and Quality of Tomato. Glass Physics and Chemistry, 2021, 47, S67-S74.	0.2	2
17	Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles. Molecules, 2020, 25, 154.	1.7	12
18	Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals, 2020, 10, 1038.	1.0	4

G P KOPITSA

#	Article	IF	CITATIONS
19	Calcifying Bacteria Flexibility in Induction of CaCO3 Mineralization. Life, 2020, 10, 317.	1.1	15
20	ls Supercritical So Critical? The Choice of Temperature to Synthesize SiO2 Aerogels. Russian Journal of Inorganic Chemistry, 2020, 65, 255-262.	0.3	6
21	1D Ceric Hydrogen Phosphate Aerogels: Noncarbonaceous Ultraflyweight Monolithic Aerogels. ACS Omega, 2020, 5, 17592-17600.	1.6	8
22	Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite. Russian Journal of Inorganic Chemistry, 2020, 65, 426-430.	0.3	13
23	Aqueous Chemical Co-Precipitation of Iron Oxide Magnetic Nanoparticles for Use in Agricultural Technologies. Letters in Applied NanoBioScience, 2020, 10, 2215-2239.	0.5	4
24	Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. Materials, 2020, 13, 2087.	1.3	8
25	Hydrothermal synthesis of CeO2 nanostructures and their electrochemical properties. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11, 355-364.	0.2	5
26	Synthesis and study of multiferroic and ferroelectric â€~core-shell' powders for application in electronic devices for medicine and ecology. , 2019, , 183-207.		1
27	Model of Fractal Particles of Hydrated Zirconium Dioxide, Based on Small-Angle Neutron Scattering Data. Journal of Surface Investigation, 2019, 13, 908-913.	0.1	1
28	Investigating the Relationship between the Conditions of Polythiophene Electrosynthesis and the Pseudocapacitive Properties of Polythiophene-Based Electrodes. Glass Physics and Chemistry, 2019, 45, 281-290.	0.2	1
29	Photoluminescent porous aerogel monoliths containing ZnEu-complex: the first example of aerogel modified with a heteronuclear metal complex. Journal of Sol-Gel Science and Technology, 2019, 92, 304-318.	1.1	13
30	Application of BaTiO3/CoFe2O4–SiO2 Structure to Control the Electrical Properties of Composites. Glass Physics and Chemistry, 2019, 45, 513-517.	0.2	1
31	A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4. Materials Chemistry and Physics, 2019, 225, 347-357.	2.0	12
32	Temperature-responsive star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) with central thiacalix[4]arene fragments: structure and properties in solutions. Colloid and Polymer Science, 2019, 297, 285-296.	1.0	5
33	The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 164-175.	0.2	5
34	Hybrid mesoporous silica with controlled drug release. Journal of the Serbian Chemical Society, 2019, 84, 1027-1039.	0.4	10
35	Structure and photoluminescent properties of TiO2:Eu3+ nanoparticles synthesized under hydro and solvothermal conditions from different precursors. Nanosystems: Physics, Chemistry, Mathematics, 2019, , 361-373.	0.2	4

 $36 \qquad \text{Luminescence of Eu³⁺ ions in hybrid polymerâ \in norganic composites based on poly(methyl) Tj ETQq000 rgBT <math>\frac{10}{14}$ or rgBT $\frac{10}{14}$ or rgBT

G P ΚΟΡΙΤ SA

#	Article	IF	CITATIONS
37	First rare-earth phosphate aerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate aerogel. Journal of Sol-Gel Science and Technology, 2018, 85, 574-584.	1.1	13
38	Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 691-699.	0.3	12
39	Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering. Journal of Surface Investigation, 2018, 12, 296-305.	0.1	9
40	Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium. Applied Surface Science, 2017, 424, 275-281.	3.1	40
41	Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials. Journal of Physics: Conference Series, 2017, 848, 012017.	0.3	10
42	Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system. Russian Journal of Inorganic Chemistry, 2017, 62, 1275-1285.	0.3	18
43	Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions. Inorganic Materials, 2017, 53, 1270-1278.	0.2	9
44	Structure and proton conductivity of a hydrated Nafion-115 membrane. Glass Physics and Chemistry, 2016, 42, 637-639.	0.2	5
45	How xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide. Russian Journal of Inorganic Chemistry, 2016, 61, 1347-1360.	0.3	8
46	Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment. Journal of Surface Investigation, 2016, 10, 177-186.	0.1	2
47	Effect of biocidal additives on the mesostructure of epoxy–siloxane bioactive coatings. Journal of Surface Investigation, 2016, 10, 113-122.	0.1	3
48	Combined SANS and SAXS study of the action of ultrasound on the structure of amorphous zirconia gels. Ultrasonics Sonochemistry, 2015, 24, 230-237.	3.8	18
49	Microstructure of Zirconia-Based Sol-Gel Glasses Studied by SANS. Acta Physica Polonica A, 2015, 128, 582-585.	0.2	0
50	Structure of zirconium dioxide based porous glasses. Journal of Surface Investigation, 2014, 8, 967-975.	0.1	4
51	Small-angle neutron scattering study of the mesostructure of bioactive coatings for stone materials based on nanodiamond-modified epoxy siloxane sols. Physics of the Solid State, 2014, 56, 105-113.	0.2	9
52	Complete inheritance of fractal properties during first-order phase transition. Journal of Physics and Chemistry of Solids, 2014, 75, 296-299.	1.9	7
53	On the size effect in nanocrystalline cerium dioxide: Is the Tsunekawa model correct?. Journal of Surface Investigation, 2014, 8, 997-1001.	0.1	6
54	pH control of the structure, composition, and catalytic activity of sulfated zirconia. Journal of Solid State Chemistry, 2013, 198, 496-505.	1.4	24

G P ΚΟΡΙΤ SA

#	Article	IF	CITATIONS
55	Effect of high intensity ultrasound on the mesostructure of hydrated zirconia. Journal of Physics: Conference Series, 2012, 340, 012057.	0.3	5
56	Effect of synthesis conditions of the micro- and mesostructure of monodisperse Y(OH)CO3 powders. Doklady Chemistry, 2012, 446, 207-211.	0.2	2
5 7	One-stage synthesis of ceria colloid solutions for biomedical use. Doklady Chemistry, 2011, 437, 103-106.	0.2	29
58	Effect of thermal treatment on characteristics nanodiamonds and diamond blend. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C557-C557.	0.3	0
59	Evolution of composition and fractal structure of hydrous zirconia xerogels during thermal annealing. Russian Journal of Inorganic Chemistry, 2010, 55, 155-161.	0.3	9
60	Oxygen nonstoichiometry of nanocrystalline ceria. Russian Journal of Inorganic Chemistry, 2010, 55, 325-327.	0.3	27
61	Investigation of the evolution of the hydrated zirconia mesostructure at different stages of heat treatment. Physics of the Solid State, 2010, 52, 957-963.	0.2	5
62	Specific features of the mesostructure of amorphous iron(III) hydroxide xerogels synthesized in an ultrasonic field. Physics of the Solid State, 2010, 52, 979-984.	0.2	0
63	Ultrasound-induced changes in mesostructure of amorphous iron (III) hydroxide xerogels: A small-angle neutron scattering study. Physical Review B, 2010, 81, .	1.1	9
64	Hydrothermal microwave synthesis of nanocrystalline cerium dioxide. Doklady Chemistry, 2009, 426, 131-133.	0.2	14
65	Mesostructure of hydrated hafnia xerogels. Doklady Chemistry, 2009, 427, 160-163.	0.2	3
66	Specifics of high-temperature coarsening of ceria nanoparticles. Russian Journal of Inorganic Chemistry, 2009, 54, 1689-1696.	0.3	16
67	Hydrothermal growth of ceria nanoparticles. Russian Journal of Inorganic Chemistry, 2009, 54, 1857-1861.	0.3	18
68	Mesostructure, fractal properties and thermal decomposition of hydrous zirconia and hafnia. Russian Journal of Inorganic Chemistry, 2009, 54, 2091-2106.	0.3	22
69	Fractal structure of ceria nanopowders. Inorganic Materials, 2008, 44, 272-277.	0.2	14
70	Mesostructure of xerogels of hydrated zirconium dioxide. JETP Letters, 2007, 85, 122-126.	0.4	12
71	Study of the heavy-fermion compound CeRu2Si2 by the small-angle neutron scattering method. JETP Letters, 2005, 81, 556-560.	0.4	5
72	Determining the structural parameters of fractal and nonfractal objects in multiple small-angle neutron scattering experiments. Journal of Experimental and Theoretical Physics, 2005, 101, 427-436.	0.2	1

G P ΚΟΡΙΤ SA

#	Article	IF	CITATIONS
73	Fluctuations of chemical composition of austenite and their consequence on shape memory effect in Fe–Mn–(Si, Cr, Ni, C, N) alloys. Acta Materialia, 2004, 52, 4791-4799.	3.8	25
74	The investigation of Fe–Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons. Physica B: Condensed Matter, 2003, 335, 134-139.	1.3	8
75	Small-angle polarized neutron scattering in YBa 2 (Cu 0.9 Fe 0.1) 3 O 7-y ceramics at T =290-550 K. Applied Physics A: Materials Science and Processing, 2002, 74, s628-s630.	1.1	2
76	The spin correlations in YBa2(Cu1â^'xFex)3Oy ceramics at T=15– investigated by the small-angle scattering of polarized neutrons. Physica B: Condensed Matter, 2001, 297, 245-249.	1.3	1
77	The investigation of the spin correlations in YBa2(Cu1â^'xFex)3Oy ceramics by the small-angle scattering of polarized neutrons. Physica B: Condensed Matter, 2000, 276-278, 788-789.	1.3	2
78	Small-angle polarized neutron scattering in Sm1â^'xSrxMnO3 (x<0.5) perovskite. Physica B: Condensed Matter, 2000, 276-278, 795-796.	1.3	16
79	Spatial spin-resonance of polarized neutrons in period-modulated static magnetic fields. Journal of Neutron Research, 1999, 8, 1-15.	0.4	0
80	Spin correlations and magnetonuclear cross-correlation in Sm(Sr)-Mn-O perovskites in the low-temperature phase. JETP Letters, 1999, 69, 353-360.	0.4	16
81	Spin correlations in YBa2(Cu1â^x Fx)3O7+y ceramic. Physics of the Solid State, 1998, 40, 19-22.	0.2	7
82	Effect of carbon and nitrogen on chemical homogeneity of fcc iron-based alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2195-2199.	1.1	24
83	The observation of the magnetic correlations in YBa2(Cu1â^'xFex)3O7+y ceramics by small-angle polarized neutron scattering. Physica B: Condensed Matter, 1997, 234-236, 839-840.	1.3	4
84	Spatial spin resonance of polarized neutrons in amplitude-modulated magnetic fields. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 389, 441-446.	0.7	6
85	Ferroelectric core/magnetic shell approach to control electric properties of composites. , 0, , .		0