Veronica Bolon-Canedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2645762/publications.pdf

Version: 2024-02-01

92 papers 4,529 citations

147801 31 h-index 106344

g-index

96 all docs 96
docs citations

96 times ranked 3812 citing authors

#	Article	IF	CITATIONS
1	How important is data quality? Best classifiers vs best features. Neurocomputing, 2022, 470, 365-375.	5.9	8
2	Case Studies to Demonstrate Real-World Applications in Ophthalmic Image Analysis. Intelligent Systems Reference Library, 2022, , 83-125.	1.2	0
3	Feature Selection: FromÂtheÂPast toÂtheÂFuture. Learning and Analytics in Intelligent Systems, 2022, , 11-34.	0.6	4
4	Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences. Electronics (Switzerland), 2022, 11, 779.	3.1	4
5	Low-precision feature selection on microarray data: an information theoretic approach. Medical and Biological Engineering and Computing, 2022, 60, 1333.	2.8	0
6	Dealing with heterogeneity in the context of distributed feature selection for classification. Knowledge and Information Systems, 2021, 63, 233-276.	3.2	4
7	Dimensionality Reduction: Is Feature Selection More Effective Than Random Selection?. Lecture Notes in Computer Science, 2021, , 113-125.	1.3	1
8	CUDA-JMI: Acceleration of feature selection on heterogeneous systems. Future Generation Computer Systems, 2020, 102, 426-436.	7. 5	5
9	Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 4477-4489.	4.9	32
10	Feature selection in image analysis: a survey. Artificial Intelligence Review, 2020, 53, 2905-2931.	15.7	67
11	A scalable saliency-based feature selection method with instance-level information. Knowledge-Based Systems, 2020, 192, 105326.	7.1	9
12	Feature selection with limited bit depth mutual information for portable embedded systems. Knowledge-Based Systems, 2020, 197, 105885.	7.1	6
13	When Size Matters: Markov Blanket with Limited Bit Depth Conditional Mutual Information. Communications in Computer and Information Science, 2020, , 243-255.	0.5	1
14	A review of feature selection methods in medical applications. Computers in Biology and Medicine, 2019, 112, 103375.	7.0	393
15	A Review of Microarray Datasets: Where to Find Them and Specific Characteristics. Methods in Molecular Biology, 2019, 1986, 65-85.	0.9	16
16	Parallel feature selection for distributed-memory clusters. Information Sciences, 2019, 496, 399-409.	6.9	9
17	Challenges and Future Trends for Microarray Analysis. Methods in Molecular Biology, 2019, 1986, 283-293.	0.9	14
18	Feature Selection Applied to Microarray Data. Methods in Molecular Biology, 2019, 1986, 123-152.	0.9	1

#	Article	IF	CITATIONS
19	Biases in feature selection with missing data. Neurocomputing, 2019, 342, 97-112.	5.9	16
20	Ensembles for feature selection: A review and future trends. Information Fusion, 2019, 52, 1-12.	19.1	327
21	Distributed classification based on distances between probability distributions in feature space. Information Sciences, 2019, 496, 431-450.	6.9	3
22	Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International Journal of Information Management, 2019, 46, 252-262.	17.5	33
23	Insights into distributed feature ranking. Information Sciences, 2019, 496, 378-398.	6.9	8
24	On developing an automatic threshold applied to feature selection ensembles. Information Fusion, 2019, 45, 227-245.	19.1	73
25	Case Study of Anomaly Detection and Quality Control of Energy Efficiency and Hygrothermal Comfort in Buildings. , 2019, , .		2
26	On the scalability of feature selection methods on high-dimensional data. Knowledge and Information Systems, 2018, 56, 395-442.	3.2	31
27	Emerging Challenges. Intelligent Systems Reference Library, 2018, , 173-205.	1.2	O
28	An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1441-1453.	9.3	55
29	Preprocessing in High Dimensional Datasets. Intelligent Systems Reference Library, 2018, , 247-271.	1.2	2
30	Feature Selection for Big Visual Data: Overview and Challenges. Lecture Notes in Computer Science, 2018, , 136-143.	1.3	2
31	Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Advances in Experimental Medicine and Biology, 2018, 1065, 607-626.	1.6	41
32	Foundations of Ensemble Learning. Intelligent Systems Reference Library, 2018, , 39-51.	1.2	0
33	Evaluation of Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, , 97-113.	1.2	5
34	Feature Selection. Intelligent Systems Reference Library, 2018, , 13-37.	1.2	2
35	Software Tools. Intelligent Systems Reference Library, 2018, , 157-171.	1.2	0
36	Other Ensemble Approaches. Intelligent Systems Reference Library, 2018, , 115-138.	1.2	0

#	Article	IF	Citations
37	Applications of Ensembles Versus Traditional Approaches: Experimental Results. Intelligent Systems Reference Library, 2018, , 139-156.	1.2	O
38	Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, , 53-81.	1.2	1
39	Combination of Outputs. Intelligent Systems Reference Library, 2018, , 83-96.	1.2	O
40	Testing Different Ensemble Configurations for Feature Selection. Neural Processing Letters, 2017, 46, 857-880.	3.2	47
41	Ensemble feature selection: Homogeneous and heterogeneous approaches. Knowledge-Based Systems, 2017, 118, 124-139.	7.1	196
42	On the use of different base classifiers in multiclass problems. Progress in Artificial Intelligence, 2017, 6, 315-323.	2.4	4
43	On the use of feature selection to improve the detection of sea oil spills in SAR images. Computers and Geosciences, 2017, 100, 166-178.	4.2	56
44	Can classification performance be predicted by complexity measures? A study using microarray data. Knowledge and Information Systems, 2017, 51, 1067-1090.	3.2	33
45	Exploring the consequences of distributed feature selection in DNA microarray data. , 2017, , .		9
46	Paving the way for providing teaching feedback in automatic evaluation of open response assignments. , $2017,$		1
47	Centralized vs. distributed feature selection methods based on data complexity measures. Knowledge-Based Systems, 2017, 117, 27-45.	7.1	53
48	Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data. International Journal of Intelligent Systems, 2017, 32, 134-152.	5.7	125
49	Feature selection for high-dimensional data. Progress in Artificial Intelligence, 2016, 5, 65-75.	2.4	97
50	Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis. JAMA Ophthalmology, 2016, 134, 651.	2.5	95
51	Multithreaded and Spark parallelization of feature selection filters. Journal of Computational Science, 2016, 17, 609-619.	2.9	35
52	Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2016, 6, 5-21.	6.8	105
53	A unified pipeline for online feature selection and classification. Expert Systems With Applications, 2016, 55, 532-545.	7.6	11
54	A comparison of performance of K-complex classification methods using feature selection. Information Sciences, 2016, 328, 1-14.	6.9	35

#	Article	IF	Citations
55	Selection of the Best Base Classifier in One-Versus-One Using Data Complexity Measures. Lecture Notes in Computer Science, 2016, , 110-120.	1.3	1
56	Using Data Complexity Measures for Thresholding in Feature Selection Rankers. Lecture Notes in Computer Science, 2016, , 121-131.	1.3	11
57	Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning. Clinical Medicine Insights: Cardiology, 2015, 9s1, CMC.S18746.	1.8	20
58	Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP―System and Image Features Associated With Expert Diagnosis. Translational Vision Science and Technology, 2015, 4, 5.	2.2	105
59	Recent advances and emerging challenges of feature selection in the context of big data. Knowledge-Based Systems, 2015, 86, 33-45.	7.1	219
60	A Time Efficient Approach for Distributed Feature Selection Partitioning by Features. Lecture Notes in Computer Science, 2015, , 245-254.	1.3	5
61	Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark., 2015,,.		17
62	Real-Time Tear Film Classification Through Cost-Based Feature Selection. Lecture Notes in Computer Science, 2015, , 78-98.	1.3	3
63	Distributed feature selection: An application to microarray data classification. Applied Soft Computing Journal, 2015, 30, 136-150.	7.2	154
64	A Distributed Feature Selection Approach Based on a Complexity Measure. Lecture Notes in Computer Science, 2015, , 15-28.	1.3	8
65	A GMM-based feature extraction technique for the automated diagnosis of Retinopathy of Prematurity. , $2015, , .$		7
66	Feature Selection for High-Dimensional Data. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , .	0.4	141
67	Foundations of Feature Selection. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , 13-28.	0.4	6
68	A Critical Review of Feature Selection Methods. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , 29-60.	0.4	4
69	Dealing with inter-expert variability in retinopathy of prematurity: A machine learning approach. Computer Methods and Programs in Biomedicine, 2015, 122, 1-15.	4.7	36
70	Ensemble Feature Selection for Rankings of Features. Lecture Notes in Computer Science, 2015, , 29-42.	1.3	16
71	An insight on complexity measures and classification in microarray data. , 2015, , .		6
72	A framework for cost-based feature selection. Pattern Recognition, 2014, 47, 2481-2489.	8.1	70

#	Article	IF	Citations
73	A Methodology for Improving Tear Film Lipid Layer Classification. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1485-1493.	6.3	32
74	Data classification using an ensemble of filters. Neurocomputing, 2014, 135, 13-20.	5.9	78
75	A review of microarray datasets and applied feature selection methods. Information Sciences, 2014, 282, 111-135.	6.9	507
76	A review of feature selection methods on synthetic data. Knowledge and Information Systems, 2013, 34, 483-519.	3.2	563
77	Toward the scalability of neural networks through feature selection. Expert Systems With Applications, 2013, 40, 2807-2816.	7.6	10
78	Scaling Up Feature Selection: A Distributed Filter Approach. Lecture Notes in Computer Science, 2013, , 121-130.	1.3	4
79	Up-to-Date Feature Selection Methods for Scalable and Efficient Machine Learning. , 2013, , 1-26.		3
80	Interferential Tear Film Lipid Layer Classification: An Automatic Dry Eye Test., 2012,,.		3
81	An ensemble of filters and classifiers for microarray data classification. Pattern Recognition, 2012, 45, 531-539.	8.1	172
82	An Agent-Based Prototype for Enhancing Sustainability Behavior at an Academic Environment. Advances in Intelligent and Soft Computing, 2012, , 257-264.	0.2	2
83	Toward an ensemble of filters for classification. , 2011, , .		1
84	A study of performance on microarray data sets for a classifier based on information theoretic learning. Neural Networks, 2011, 24, 888-96.	5.9	11
85	Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset. Expert Systems With Applications, 2011, 38, 5947-5957.	7.6	166
86	On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios. , $2011, \dots$		4
87	Scalability Analysis of ANN Training Algorithms with Feature Selection. Lecture Notes in Computer Science, 2011, , 84-93.	1.3	3
88	Local Modeling Classifier for Microarray Gene-Expression Data. Lecture Notes in Computer Science, 2010, , 11-20.	1.3	1
89	Multiclass classifiers vs multiple binary classifiers using filters for feature selection. , 2010, , .		7
90	On the effectiveness of discretization on gene selection of microarray data. , 2010, , .		24

#	Article	IF	CITATIONS
91	Feature Selection and Conversion Methods in KDD Cup 99 Dataset: A Comparison of Performance. , 2010, , .		O
92	A combination of discretization and filter methods for improving classification performance in KDD Cup 99 dataset. , 2009, , .		20