

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2645647/publications.pdf Version: 2024-02-01

Υλο λλμ

#	Article	IF	CITATIONS
1	Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics, 2013, 3, 595-615.	4.6	410
2	Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International Journal of Nanomedicine, 2012, 7, 3365.	3.3	108
3	Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8, 5821-5832.	4.0	99
4	A novel calcium phosphate ceramic–magnetic nanoparticle composite as a potential bone substitute. Biomedical Materials (Bristol), 2010, 5, 015001.	1.7	97
5	Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. ACS Nano, 2017, 11, 3690-3704.	7.3	94
6	Boronic Acid-Functionalized Magnetic Metal–Organic Frameworks via a Dual-Ligand Strategy for Highly Efficient Enrichment of Phosphopeptides and Glycopeptides. ACS Sustainable Chemistry and Engineering, 2019, 7, 6043-6052.	3.2	88
7	lmmuno-modified superparamagnetic nanoparticles <i>via</i> host–guest interactions for high-purity capture and mild release of exosomes. Nanoscale, 2018, 10, 14280-14289.	2.8	80
8	The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. Journal of Nanoparticle Research, 2011, 13, 5135-5145.	0.8	73
9	Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. Journal of Colloid and Interface Science, 2010, 347, 1-7.	5.0	61
10	Functionalization of magnetic nanoparticles with peptide dendrimers. Journal of Materials Chemistry, 2011, 21, 5464.	6.7	61
11	Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnology Advances, 2014, 32, 818-830.	6.0	58
12	Multi-affinity sites of magnetic guanidyl-functionalized metal–organic framework nanospheres for efficient enrichment of global phosphopeptides. Nanoscale, 2018, 10, 8391-8396.	2.8	58
13	Superparamagnetic nano-composite scaffolds for promoting bone cell proliferation and defect reparation without a magnetic field. RSC Advances, 2012, 2, 13007.	1.7	56
14	Glutathione-Functionalized Magnetic Covalent Organic Framework Microspheres with Size Exclusion for Endogenous Glycopeptide Recognition in Human Saliva. ACS Applied Materials & Interfaces, 2019, 11, 47218-47226.	4.0	54
15	Facile synthesis of monodisperse superparamagnetic Fe ₃ O ₄ <i>/</i> PMMA composite nanospheres with high magnetization. Nanotechnology, 2011, 22, 225604.	1.3	51
16	Leukocyteâ€Repelling Biomimetic Immunomagnetic Nanoplatform for Highâ€Performance Circulating Tumor Cells Isolation. Small, 2019, 15, e1900558.	5.2	48
17	Two-staged time-dependent materials for the prevention of implant-related infections. Acta Biomaterialia, 2020, 101, 128-140.	4.1	48
18	New-generation biomedical materials: Peptide dendrimers and their application in biomedicine. Science China Chemistry, 2010, 53, 458-478.	4.2	47

#	Article	IF	CITATIONS
19	pH-Responsive magnetic metal–organic framework nanocomposites for selective capture and release of glycoproteins. Nanoscale, 2017, 9, 527-532.	2.8	47
20	Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Science China Chemistry, 2014, 57, 461-475.	4.2	45
21	A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection. Journal of Materials Chemistry B, 2021, 9, 2483-2493.	2.9	45
22	Synthesis of superparamagnetic Fe3O4/PMMA/SiO2 nanorattles with periodic mesoporous shell for lysozyme adsorption. Nanoscale, 2012, 4, 2264.	2.8	41
23	Multifunctional luminescent immuno-magnetic nanoparticles: toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells. Journal of Materials Chemistry B, 2019, 7, 393-400.	2.9	36
24	A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis. Journal of Materials Chemistry B, 2021, 9, 2709-2716.	2.9	34
25	Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Advances, 2013, 3, 879-886.	1.7	30
26	Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111014.	2.5	30
27	The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model. Nanoscale, 2020, 12, 8720-8726.	2.8	29
28	A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. Nanoscale, 2016, 8, 7544-7555.	2.8	28
29	Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids and Surfaces B: Biointerfaces, 2014, 123, 213-218.	2.5	27
30	Dopamine self-polymerized along with hydroxyapatite onto the preactivated titanium percutaneous implants surface to promote human gingival fibroblast behavior and antimicrobial activity for biological sealing. Journal of Biomaterials Applications, 2018, 32, 1071-1082.	1.2	26
31	pH-Responsive magnetic nanospheres for the reversibly selective capture and release of glycoproteins. Journal of Materials Chemistry B, 2017, 5, 1236-1245.	2.9	25
32	Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 1811-1820.	2.9	25
33	Superparamagnetic Fe ₃ O ₄ /PMMA composite nanospheres as a nanoplatform for multimodal protein separation. RSC Advances, 2013, 3, 1557-1563.	1.7	24
34	Anti-Bacterial and Microecosystem-Regulating Effects of Dental Implant Coated with Dimethylaminododecyl Methacrylate. Molecules, 2017, 22, 2013.	1.7	24
35	Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds <i>in vivo</i> . Nanoscale, 2019, 11, 6817-6827.	2.8	24
36	PAMAM–PMAA brush-functionalized magnetic composite nanospheres: a smart nanoprobe with tunable selectivity for effective enrichment of mono-, multi-, or global phosphopeptides. Journal of Materials Chemistry B, 2020, 8, 1266-1276.	2.9	24

#	Article	IF	CITATIONS
37	Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization. Colloids and Surfaces B: Biointerfaces, 2014, 123, 413-418.	2.5	23
38	PAMA–Arg brush-functionalized magnetic composite nanospheres for highly effective enrichment of phosphorylated biomolecules. Journal of Materials Chemistry B, 2018, 6, 3969-3978.	2.9	23
39	Cellâ€Released Magnetic Vesicles Capturing Metabolic Labeled Rare Circulating Tumor Cells Based on Bioorthogonal Chemistry. Small, 2021, 17, e2007796.	5.2	23
40	Polypeptide dendrimers: Self-assembly and drug delivery. Science China Chemistry, 2011, 54, 326-333.	4.2	22
41	Synthesis of amphipathic superparamagnetic Fe ₃ O ₄ Janus nanoparticles via a moderate strategy and their controllable self-assembly. RSC Advances, 2016, 6, 40450-40458.	1.7	22
42	Ligandâ€Free Fe ₃ O ₄ /CMCS Nanoclusters with Negative Charges for Efficient Structureâ€Selective Protein Adsorption. Small, 2016, 12, 2344-2353.	5.2	21
43	"Green―functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging. Nanoscale, 2014, 6, 1305-1310.	2.8	20
44	Facile Fabrication of Robust Organic Counterionâ€induced Vesicles: Reversible Thermal Behavior for Optical Temperature Sensor and Synergistic Catalyst upon Removal of Amine. Advanced Functional Materials, 2015, 25, 3764-3774.	7.8	20
45	A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption. Nanoscale, 2015, 7, 17617-17622.	2.8	19
46	Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells. Journal of Colloid and Interface Science, 2019, 545, 94-103.	5.0	19
47	Surfactant-free synthesis of covalent organic framework nanospheres in water at room temperature. Journal of Colloid and Interface Science, 2022, 606, 1333-1339.	5.0	19
48	Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process. Journal of Thermal Spray Technology, 2011, 20, 560-568.	1.6	18
49	Protein corona on magnetite nanoparticles and internalization of nanoparticle–protein complexes into healthy and cancer cells. Archives of Pharmacal Research, 2014, 37, 129-141.	2.7	18
50	Conformational changes of adsorbed and free proteins on magnetic nanoclusters. Colloids and Surfaces B: Biointerfaces, 2018, 170, 664-672.	2.5	18
51	Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Analytica Chimica Acta, 2021, 1177, 338761.	2.6	18
52	Hollow superparamagnetic PLGA/Fe ₃ O ₄ composite microspheres for lysozyme adsorption. Nanotechnology, 2014, 25, 085702.	1.3	17
53	Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media. International Journal of Energy Production and Management, 2017, 4, 269-279.	1.9	17
54	Superparamagnetic nanocomposites based on surface imprinting for biomacromolecular recognition. Materials Science and Engineering C, 2017, 70, 1076-1080.	3.8	15

#	Article	IF	CITATIONS
55	Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Advances, 2013, 3, 23571.	1.7	14
56	Bottlebrush-like highly efficient antibacterial coating constructed using α-helical peptide dendritic polymers on the poly(styrene- <i>b</i> -(ethylene- <i>co</i> -butylene)- <i>b</i> -styrene) surface. Journal of Materials Chemistry B, 2020, 8, 7428-7437.	2.9	14
57	Comparison of drug delivery properties of PEG-b-pdhpc micelles with different compositions. Chinese Journal of Polymer Science (English Edition), 2012, 30, 387-396.	2.0	13
58	Double-sided coordination assembly: superparamagnetic composite microspheres with layer-by-layer structure for protein separation. RSC Advances, 2014, 4, 1055-1061.	1.7	13
59	Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145, 122080.	1.2	13
60	Modulation of cationicity of chitosan for tuning mesenchymal stem cell adhesion, proliferation, and differentiation. Biointerphases, 2015, 10, 04A304.	0.6	12
61	The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 353-365.	1.5	12
62	In Situ Controllable Fabrication of Two-Dimensional Magnetic Fe ₃ O ₄ /TiO ₂ @Ti ₃ C ₂ T _{<i>x</i>} Composites for Highly Efficient Phosphopeptides Enrichment. ACS Applied Materials & Interfaces, 2021, 13, 54665-54676.	4.0	12
63	Controllable Environment Protein Corona-Disguised Immunomagnetic Beads for High-Performance Circulating Tumor Cell Enrichment. Analytical Chemistry, 2022, 94, 4650-4657.	3.2	12
64	Study on the α-cyclodextrin/poly(ethylene glycol) self-assembly supramolecular nanoparticles for drug delivery. Science China Chemistry, 2010, 53, 495-501.	4.2	11
65	Intermolecular B–N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. Journal of Materials Chemistry B, 2021, 9, 453-463.	2.9	11
66	Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 6377-6386.	2.9	11
67	Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes. Journal of Materials Chemistry B, 2022, 10, 4059-4069.	2.9	11
68	Reversible linear assemblies of superparamagnetic Fe3O4/PLGA composite microspheres induced by ultra-low magnetic field. Composites Science and Technology, 2014, 92, 34-40.	3.8	10
69	Graphene oxide and mineralized collagen-functionalized dental implant abutment with effective soft tissue seal and romotely repeatable photodisinfection. International Journal of Energy Production and Management, 2022, 9, rbac024.	1.9	10
70	Synthesis of functionalizable and biodegradable polymers via ringâ€opening polymerization of 5â€benzyloxyâ€trimethylene carbonate and εâ€caprolactone. Journal of Applied Polymer Science, 2012, 123, 2204-2210.	1.3	8
71	Complementary multiple hydrogen-bond-based magnetic composite microspheres for high coverage and efficient phosphopeptide enrichment in bio-samples. Journal of Materials Chemistry B, 2020, 8, 8414-8421.	2.9	8
72	Immuno-affinitive supramolecular magnetic nanoparticles incorporating cucurbit[8]uril-mediated ternary host-guest complexation structures for high-efficient small extracellular vesicle enrichment. Journal of Colloid and Interface Science, 2022, 611, 462-471.	5.0	8

#	Article	IF	CITATIONS
73	Ultrasensitive DNA Methylation Ratio Detection Based on the Target-Induced Nanoparticle-Coupling and Site-Specific Base Oxidation Damage for Colorectal Cancer. Analytical Chemistry, 2022, 94, 6261-6270.	3.2	8
74	Polymer-entanglement-driven coassembly of hybrid superparamagnetic nanoparticles: Tunable structures and flexible functionalization. Journal of Colloid and Interface Science, 2017, 508, 263-273.	5.0	6
75	Static Magnetic Field Dictates Protein Corona Formation on the Surface of Glutamineâ€Modified Superparamagnetic Iron Oxide Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1700418.	1.2	6
76	Controllable Preparation of Ternary Superparamagnetic Nanoparticles Dual-Doped with Mn and Zn Elements. Journal of Nanoscience and Nanotechnology, 2012, 12, 8437-8442.	0.9	5
77	One-Pot Synthesis of Hydrophilic Superparamagnetic Fe ₃ O ₄ /Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization. Journal of Nanoscience and Nanotechnology, 2015, 15, 349-354.	0.9	5
78	Preparation and Properties of Supermagnetic Calcium Phosphate Composite Scaffold. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 79-84.	0.6	5
79	Magnetic MXene/PAMAM Composites with Flexible Dimensional Regulation for Highly Effective Enrichment of Phosphopeptides. ACS Sustainable Chemistry and Engineering, 2022, 10, 2494-2508.	3.2	5
80	Interaction of Nucleic Acids with Metal–Organic Framework Nanosheets by Fluorescence Spectroscopy and Molecular Dynamics Simulations. ACS Applied Bio Materials, 2022, 5, 3500-3508.	2.3	5
81	Uniform Superparamagnetic Fe ₃ O ₄ /CMCS Composite Nanospheres for Lysozyme Adsorption. Journal of Nanoscience and Nanotechnology, 2016, 16, 2233-2238.	0.9	4
82	Protein corona of magnetic PEI/siRNA complex under the influence of a magnetic field improves transfection efficiency <i>via</i> complement and coagulation cascades. Journal of Materials Chemistry B, 2019, 7, 4207-4216.	2.9	4
83	Magnetic polymer nanomaterials for sample pretreatment in proteomics. Materials Advances, 2021, 2, 2200-2215.	2.6	4
84	Metal–Organic Framework-Derived Hollow and Hierarchical Porous Multivariate Metal-Oxide Microspheres for Efficient Phosphoproteomics Analysis. ACS Applied Materials & Interfaces, 2021, 13, 34762-34772.	4.0	4
85	Artificial cell membrane camouflaged immunomagnetic nanoparticles for enhanced circulating tumor cell isolation. Journal of Materials Chemistry B, 2022, 10, 3119-3125.	2.9	4
86	The polymeric crystallinity effect on the responses of bone marrow stromal cells. E-Polymers, 2009, 9,	1.3	3
87	pH-responsive superstructures prepared via the assembly of Fe3O4 amphipathic Janus nanoparticles. International Journal of Energy Production and Management, 2018, 5, 251-259.	1.9	3
88	POLY(L-GLUTAMIC ACID) DENDRON BASED pH SENSITIVE DRUG CARRIER WITH MAGNETIC NANOPARTICLE CORE. Acta Polymerica Sinica, 2011, 011, 679-686.	0.0	3
89	Protein Adsorption: Ligand-Free Fe3O4/CMCS Nanoclusters with Negative Charges for Efficient Structure-Selective Protein Adsorption (Small 17/2016). Small, 2016, 12, 2248-2248.	5.2	2
90	Fabrication of hollow-structured composite microspheres with amphiphilic and superparamagnetic properties. RSC Advances, 2016, 6, 14077-14083.	1.7	2

#	Article	IF	CITATIONS
91	Rapid synthesis of magnetic polyimine nanospheres at room temperature for enrichment of endogenous C-peptide. Colloids and Interface Science Communications, 2021, 42, 100390.	2.0	2
92	Study on the Synthesis and Properties of Superparamagnetic Monodisperse Fe ₃ O ₄ Nanoparticles. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 727-731.	0.6	2
93	Dynamic biological interfaces functionalized fructose-responsive immunomagnetic beads for high-efficient and high-purity exosome enrichment. Materials and Design, 2022, 213, 110366.	3.3	2
94	Hydrophilic magnetic covalent triazine frameworks for differential N-glycopeptides enrichment in breast cancer plasma membranes. Journal of Materials Chemistry B, 2022, 10, 717-727.	2.9	1