Rodney P Guttmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264554/publications.pdf

Version: 2024-02-01

37 papers 1,956 citations

³⁶¹⁴¹³
20
h-index

35 g-index

37 all docs

37 docs citations

37 times ranked

2192 citing authors

#	Article	IF	Citations
1	A spatial study of quality of life in the USA. SN Social Sciences, 2021, 1, 1.	0.7	5
2	Coconut Oil and its Constituents as a Treatment for Alzheimer's Dementia. Journal of Student Research, 2020, 9, .	0.1	4
3	A spatial study of bladder cancer mortality and incidence in the contiguous US: 2000–2014. Science of the Total Environment, 2019, 670, 806-813.	8.0	7
4	Prediction of Vancomycin Dose for Recommended Trough Concentrations in Pediatric Patients With Cystic Fibrosis. Journal of Clinical Pharmacology, 2018, 58, 662-665.	2.0	4
5	GEOGRAPHIC CLUSTERS OF ALZHEIMER'S DISEASE MORTALITY RATES IN THE USA: 2008-2012. journal of prevention of Alzheimer's disease, The, 2018, 5, 1-5.	2.7	3
6	Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1521-1532.	3.8	31
7	Phage display for identification of serum biomarkers of traumatic brain injury. Journal of Neuroscience Methods, 2016, 272, 33-37.	2.5	14
8	Calpain cleaves methionine aminopeptidase-2 in a rat model of ischemia/reperfusion. Brain Research, 2013, 1499, 129-135.	2.2	11
9	Redox Regulation of Cysteine-Dependent Enzymes in Neurodegeneration. International Journal of Cell Biology, 2012, 2012, 1-8.	2.5	7
10	Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell, 2011, 10, 103-113.	6.7	41
11	Thiol-protease oxidation in age-related neuropathology. Free Radical Biology and Medicine, 2011, 51, 282-288.	2.9	6
12	NMR structural characterization of the pentaâ€peptide calpain inhibitor. FEBS Letters, 2009, 583, 135-140.	2.8	5
13	Protease Activity in Post-Mortem Red Swamp Crayfish (<i>Procambarus clarkii</i>) Muscle Stored in Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2008, 56, 8658-8663.	5.2	11
14	Recent developments in the therapeutic targeting of calpains in neurodegeneration. Expert Opinion on Therapeutic Patents, 2007, 17, 1203-1213.	5.0	0
15	Inhibition of calpain-mediated cell death by a novel peptide inhibitor. Experimental Neurology, 2006, 202, 506-513.	4.1	9
16	Identification and characterization of PEBP as a calpain substrate. Journal of Neurochemistry, 2006, 99, 1133-1141.	3.9	26
17	Identification of a novel calpain inhibitor using phage display. Biochemical and Biophysical Research Communications, 2005, 333, 1087-1092.	2.1	10
18	Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2005, 334, 342-348.	2.1	27

#	Article	lF	Citations
19	Calpain-dependent Endoproteolytic Cleavage of PrPSc Modulates Scrapie Prion Propagation. Journal of Biological Chemistry, 2004, 279, 21948-21956.	3.4	115
20	Oxidative stress inhibits ionomycin-mediated cell death in cortical neurons. Journal of Neuroscience Research, 2004, 76, 104-109.	2.9	13
21	Distinct cleavage patterns of normal and pathologic forms of α-synuclein by calpain I in vitro. Journal of Neurochemistry, 2003, 86, 836-847.	3.9	147
22	Cross-talk between Calpain and Caspase Proteolytic Systems During Neuronal Apoptosis. Journal of Biological Chemistry, 2003, 278, 14162-14167.	3.4	225
23	Selective Activation Induced Cleavage of the NR2B Subunit by Calpain. Journal of Neuroscience, 2003, 23, 11322-11331.	3.6	129
24	Excitotoxicity: Perspectives Based on <i>N</i> -Methyl-d-Aspartate Receptor Subtypes. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 717-723.	2.5	184
25	Proteolysis of theN-Methyl-d-Aspartate Receptor by Calpain in Situ. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1023-1030.	2.5	77
26	A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neuroscience Letters, 2001, 310, 9-12.	2.1	16
27	Specific proteolysis of the NR2 subunit at multiple sites by calpain. Journal of Neurochemistry, 2001, 78, 1083-1093.	3.9	100
28	Pharmacological characterization of interactions of RO 25-6981 with the NR2B ($\hat{l}\mu 2$) subunit. European Journal of Pharmacology, 2001, 416, 185-195.	3.5	37
29	NMDA Receptor Pharmacology: Perspectives from Molecular Biology. Current Drug Targets, 2001, 2, 215-231.	2.1	110
30	N-Methyl-d-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production. Molecular Brain Research, 2000, 77, 163-175.	2.3	34
31	Measurement of Calpain Activity In Vitro and In Situ Using a Fluorescent Compound and Tau as Substrates., 2000, 144, 143-150.		9
32	Oxidative Stress Inhibits Calpain Activity in Situ. Journal of Biological Chemistry, 1998, 273, 13331-13338.	3.4	87
33	Modulation of the in Situ Activity of Tissue Transglutaminase by Calcium and GTP. Journal of Biological Chemistry, 1998, 273, 2288-2295.	3.4	186
34	Tissue Transglutaminase Is an In Situ Substrate of Calpain: Regulation of Activity. Journal of Neurochemistry, 1998, 71, 240-247.	3.9	34
35	'Oxidation Inhibits Substrate Proteolysis by Calpain I but Not Autolysis. Journal of Biological Chemistry, 1997, 272, 2005-2012.	3.4	104
36	Calpains: Intact and active?. BioEssays, 1997, 19, 1011-1018.	2.5	95

3

#	Article	IF	CITATIONS
37	Ï,, Selfâ€Association: Stabilization with a Chemical Crossâ€Linker and Modulation by Phosphorylation and Oxidation State. Journal of Neurochemistry, 1995, 64, 1209-1215.	3.9	33