List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264480/publications.pdf Version: 2024-02-01

DEL-YONG SHI

#	Article	IF	CITATIONS
1	Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 2020, 383, 2439-2450.	13.9	2,107
2	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	13.5	1,680
3	COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature, 2020, 586, 594-599.	13.7	1,520
4	Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 2021, 592, 116-121.	13.7	1,380
5	PhaseÂl/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586, 589-593.	13.7	1,197
6	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
7	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	2.9	742
8	2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468, 452-456.	13.7	736
9	An Infectious cDNA Clone of SARS-CoV-2. Cell Host and Microbe, 2020, 27, 841-848.e3.	5.1	617
10	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	13.7	586
11	BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 2021, 595, 572-577.	13.7	583
12	Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.	13.7	579
13	Zika virus: History, emergence, biology, and prospects for control. Antiviral Research, 2016, 130, 69-80.	1.9	571
14	Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 2021, 27, 620-621.	15.2	562
15	Neutralizing Activity of BNT162b2-Elicited Serum. New England Journal of Medicine, 2021, 384, 1466-1468.	13.9	528
16	BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592, 283-289.	13.7	494
17	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	6.0	459
18	A Highly Structured, Nuclease-Resistant, Noncoding RNA Produced by Flaviviruses Is Required for Pathogenicity. Cell Host and Microbe, 2008, 4, 579-591.	5.1	420

#	Article	IF	CITATIONS
19	A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.	6.0	399
20	The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2022, 602, 294-299.	13.7	364
21	NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. Journal of Virology, 2009, 83, 5408-5418.	1.5	358
22	Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infectious Diseases, 2016, 2, 382-392.	1.8	350
23	SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. New England Journal of Medicine, 2021, 385, 1627-1629.	13.9	346
24	West Nile Virus 5′-Cap Structure Is Formed by Sequential Guanine N-7 and Ribose 2′-O Methylations by Nonstructural Protein 5. Journal of Virology, 2006, 80, 8362-8370.	1.5	329
25	Structure and Function of Flavivirus NS5 Methyltransferase. Journal of Virology, 2007, 81, 3891-3903.	1.5	324
26	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	3.3	323
27	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321
28	Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature, 2017, 545, 482-486.	13.7	318
29	BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature, 2021, 596, 273-275.	13.7	318
30	Ten years of dengue drug discovery: Progress and prospects. Antiviral Research, 2013, 100, 500-519.	1.9	310
31	West Nile virus. Lancet Neurology, The, 2007, 6, 171-181.	4.9	302
32	Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections. Journal of Virology, 2010, 84, 8332-8341.	1.5	292
33	Inhibition of Interferon Signaling by the New York 99 Strain and Kunjin Subtype of West Nile Virus Involves Blockage of STAT1 and STAT2 Activation by Nonstructural Proteins. Journal of Virology, 2005, 79, 1934-1942.	1.5	274
34	A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nature Communications, 2020, 11, 4059.	5.8	266
35	An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host and Microbe, 2016, 19, 891-900.	5.1	252
36	Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infectious Diseases, 2020, 6, 909-915.	1.8	252

#	Article	IF	CITATIONS
37	Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. Journal of Virology, 2020, 94, .	1.5	250
38	A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nature Medicine, 2017, 23, 763-767.	15.2	242
39	Strategies for development of dengue virus inhibitors. Antiviral Research, 2010, 85, 450-462.	1.9	240
40	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
41	An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications, 2018, 9, 414.	5.8	231
42	In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biology, 2020, 18, e3000849.	2.6	225
43	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	13.5	224
44	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
45	Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Reports, 2022, 39, 110829.	2.9	214
46	Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science, 2016, 354, 1148-1152.	6.0	212
47	Discovery of 4-Benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): A Novel HIV-1 Attachment Inhibitor That Interferes with CD4-gp120 Interactionsâ€. Journal of Medicinal Chemistry, 2003, 46, 4236-4239.	2.9	206
48	The Structural Basis for Serotype-Specific Neutralization of Dengue Virus by a Human Antibody. Science Translational Medicine, 2012, 4, 139ra83.	5.8	200
49	RNA Structures Required for Production of Subgenomic Flavivirus RNA. Journal of Virology, 2010, 84, 11407-11417.	1.5	190
50	Infectious cDNA Clone of the Epidemic West Nile Virus from New York City. Journal of Virology, 2002, 76, 5847-5856.	1.5	189
51	A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication. PLoS Pathogens, 2015, 11, e1004682.	2.1	180
52	Zika virus has oncolytic activity against glioblastoma stem cells. Journal of Experimental Medicine, 2017, 214, 2843-2857.	4.2	179
53	A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nature Communications, 2020, 11, 5214.	5.8	179
54	The dengue virus NS5 protein as a target for drug discovery. Antiviral Research, 2015, 119, 57-67.	1.9	168

#	Article	IF	CITATIONS
55	Functional Analysis of Mosquito-Borne Flavivirus Conserved Sequence Elements within 3′ Untranslated Region of West Nile Virus by Use of a Reporting Replicon That Differentiates between Viral Translation and RNA Replication. Journal of Virology, 2003, 77, 10004-10014.	1.5	165
56	Membrane Topology and Function of Dengue Virus NS2A Protein. Journal of Virology, 2013, 87, 4609-4622.	1.5	162
57	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	6.5	155
58	Inhibition of Flavivirus Infections by Antisense Oligomers Specifically Suppressing Viral Translation and RNA Replication. Journal of Virology, 2005, 79, 4599-4609.	1.5	151
59	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148
60	Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase. Journal of Biological Chemistry, 2011, 286, 6233-6240.	1.6	147
61	Inhibition of Dengue Virus through Suppression of Host Pyrimidine Biosynthesis. Journal of Virology, 2011, 85, 6548-6556.	1.5	142
62	Interaction between the Cellular Protein eEF1A and the 3′-Terminal Stem-Loop of West Nile Virus Genomic RNA Facilitates Viral Minus-Strand RNA Synthesis. Journal of Virology, 2007, 81, 10172-10187.	1.5	141
63	The Host Response to West Nile Virus Infection Limits Viral Spread through the Activation of the Interferon Regulatory Factor 3 Pathway. Journal of Virology, 2004, 78, 7737-7747.	1.5	137
64	Flavivirus methyltransferase: A novel antiviral target. Antiviral Research, 2008, 80, 1-10.	1.9	137
65	Engineering SARS-CoV-2 using a reverse genetic system. Nature Protocols, 2021, 16, 1761-1784.	5.5	137
66	Construction and Characterization of Subgenomic Replicons of New York Strain of West Nile Virus. Virology, 2002, 296, 219-233.	1.1	134
67	Inhibition of Dengue Virus by Targeting Viral NS4B Protein. Journal of Virology, 2011, 85, 11183-11195.	1.5	130
68	Identification of Compounds with Anti-West Nile Virus Activity. Journal of Medicinal Chemistry, 2006, 49, 2127-2137.	2.9	128
69	Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021, 595, 718-723.	13.7	128
70	2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase. PLoS Pathogens, 2012, 8, e1002642.	2.1	125
71	A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage. Nature Communications, 2017, 8, 676.	5.8	125
72	Adenosine Analog NITD008 Is a Potent Inhibitor of Zika Virus. Open Forum Infectious Diseases, 2016, 3, ofw175.	0.4	124

#	Article	IF	CITATIONS
73	Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Research, 2019, 47, e130-e130.	6.5	124
74	Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathogens, 2016, 12, e1005737.	2.1	124
75	Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the <i>In Vitro</i> Blood-Testis Barrier Model. Journal of Virology, 2017, 91, .	1.5	122
76	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	1.9	121
77	A small molecule fusion inhibitor of dengue virus. Antiviral Research, 2009, 84, 260-266.	1.9	119
78	Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Research, 2011, 91, 11-19.	1.9	119
79	Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine, 2016, 12, 170-177.	2.7	118
80	Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Reports, 2017, 21, 1180-1190.	2.9	118
81	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
82	Cyclosporine Inhibits Flavivirus Replication through Blocking the Interaction between Host Cyclophilins and Viral NS5 Protein. Antimicrobial Agents and Chemotherapy, 2009, 53, 3226-3235.	1.4	116
83	Characterization of Dengue Virus NS4A and NS4B Protein Interaction. Journal of Virology, 2015, 89, 3455-3470.	1.5	116
84	Functional Analysis of Two Cavities in Flavivirus NS5 Polymerase. Journal of Biological Chemistry, 2011, 286, 14362-14372.	1.6	114
85	Immunoassay Targeting Nonstructural Protein 5 To Differentiate West Nile Virus Infection from Dengue and St. Louis Encephalitis Virus Infections and from Flavivirus Vaccination. Journal of Clinical Microbiology, 2003, 41, 4217-4223.	1.8	113
86	Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARSâ€CoVâ€2 Neutralizing Antibodies. Current Protocols in Immunology, 2020, 131, e116.	3.6	111
87	Distinct RNA Elements Confer Specificity to Flavivirus RNA Cap Methylation Events. Journal of Virology, 2007, 81, 4412-4421.	1.5	109
88	High-Throughput Assays Using a Luciferase-Expressing Replicon, Virus-Like Particles, and Full-Length Virus for West Nile Virus Drug Discovery. Antimicrobial Agents and Chemotherapy, 2005, 49, 4980-4988.	1.4	108
89	Triaryl Pyrazoline Compound Inhibits Flavivirus RNA Replication. Antimicrobial Agents and Chemotherapy, 2006, 50, 1320-1329.	1.4	107
90	Flavivirus RNA methylation. Journal of General Virology, 2014, 95, 763-778.	1.3	107

#	Article	IF	CITATIONS
91	West Nile Virus Methyltransferase Catalyzes Two Methylations of the Viral RNA Cap through a Substrate-Repositioning Mechanism. Journal of Virology, 2008, 82, 4295-4307.	1.5	105
92	Inhibition of Dengue Virus Polymerase by Blocking of the RNA Tunnel. Journal of Virology, 2010, 84, 5678-5686.	1.5	104
93	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
94	U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antiviral Research, 2012, 93, 191-198.	1.9	103
95	Keratinocytes Are Cell Targets of West Nile Virus <i>In Vivo</i> . Journal of Virology, 2011, 85, 5197-5201.	1.5	102
96	Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response. Cellular and Molecular Immunology, 2021, 18, 746-748.	4.8	102
97	Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 2017, 13, e1006535.	2.1	101
98	West Nile Virus Experimental Evolution in vivo and the Trade-off Hypothesis. PLoS Pathogens, 2011, 7, e1002335.	2.1	98
99	Structural biology of dengue virus enzymes: Towards rational design of therapeutics. Antiviral Research, 2012, 96, 115-126.	1.9	98
100	Rational Design of a Live Attenuated Dengue Vaccine: 2′-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques. PLoS Pathogens, 2013, 9, e1003521.	2.1	98
101	Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity, 2018, 48, 487-499.e5.	6.6	94
102	NMR Analysis of a Novel Enzymatically Active Unlinked Dengue NS2B-NS3 Protease Complex. Journal of Biological Chemistry, 2013, 288, 12891-12900.	1.6	93
103	BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. New England Journal of Medicine, 2021, 385, 472-474.	13.9	93
104	Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection. Nature Communications, 2022, 13, 852.	5.8	92
105	Two Distinct Sets of NS2A Molecules Are Responsible for Dengue Virus RNA Synthesis and Virion Assembly. Journal of Virology, 2015, 89, 1298-1313.	1.5	90
106	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	2.9	90
107	Characterization of Dengue Virus Resistance to Brequinar in Cell Culture. Antimicrobial Agents and Chemotherapy, 2010, 54, 3686-3695.	1.4	89
108	Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor. Journal of Virology, 2013, 87, 5291-5295.	1.5	89

#	Article	IF	CITATIONS
109	Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14834-14839.	3.3	89
110	Axl Promotes Zika Virus Entry and Modulates the Antiviral State of Human Sertoli Cells. MBio, 2019, 10, .	1.8	88
111	In Vitro Resistance Selection and In Vivo Efficacy of Morpholino Oligomers against West Nile Virus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2470-2482.	1.4	86
112	Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathogens, 2022, 18, e1010627.	2.1	85
113	Exclusion of West Nile Virus Superinfection through RNA Replication. Journal of Virology, 2009, 83, 11765-11776.	1.5	84
114	Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nature Communications, 2018, 9, 673.	5.8	84
115	Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Research, 2011, 89, 26-34.	1.9	83
116	Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus. Journal of Virology, 2015, 89, 3471-3483.	1.5	83
117	A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis. EBioMedicine, 2017, 16, 136-140.	2.7	83
118	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	13.7	82
119	Rational Design of a Flavivirus Vaccine by Abolishing Viral RNA 2′- <i>O</i> Methylation. Journal of Virology, 2013, 87, 5812-5819.	1.5	81
120	Zika Virus Vaccine: Progress and Challenges. Cell Host and Microbe, 2018, 24, 12-17.	5.1	81
121	Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host and Microbe, 2022, 30, 485-488.e3.	5.1	80
122	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
123	Dimerization of Flavivirus NS4B Protein. Journal of Virology, 2014, 88, 3379-3391.	1.5	77
124	Discovery of Dengue Virus NS4B Inhibitors. Journal of Virology, 2015, 89, 8233-8244.	1.5	77
125	Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016, 12, 156-160.	2.7	77
126	Stimulation of Hepatitis C Virus (HCV) Nonstructural Protein 3 (NS3) Helicase Activity by the NS3 Protease Domain and by HCV RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 8687-8697.	1.5	76

#	Article	IF	CITATIONS
127	Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infectious Diseases, 2016, 2, 170-172.	1.8	76
128	Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis. MBio, 2017, 8, .	1.8	76
129	Serologic diagnosis of West Nile virus infection. Expert Review of Molecular Diagnostics, 2003, 3, 733-741.	1.5	75
130	Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines. Journal of Virology, 2014, 88, 7276-7285.	1.5	75
131	A Crystal Structure of the Dengue Virus Non-structural Protein 5 (NS5) Polymerase Delineates Interdomain Amino Acid Residues That Enhance Its Thermostability and de Novo Initiation Activities. Journal of Biological Chemistry, 2013, 288, 31105-31114.	1.6	74
132	Zika virus epidemic in Brazil. I. Fatal disease in adults: Clinical and laboratorial aspects. Journal of Clinical Virology, 2016, 85, 56-64.	1.6	74
133	Treatment of Human Clioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio, 2018, 9, .	1.8	74
134	A Single Amino Acid in Nonstructural Protein NS4B Confers Virulence to Dengue Virus in AG129 Mice through Enhancement of Viral RNA Synthesis. Journal of Virology, 2011, 85, 7775-7787.	1.5	73
135	Overlapping and Distinct Molecular Determinants Dictating the Antiviral Activities of TRIM56 against Flaviviruses and Coronavirus. Journal of Virology, 2014, 88, 13821-13835.	1.5	73
136	The 5′ and 3′ Downstream AUG Region Elements Are Required for Mosquito-Borne Flavivirus RNA Replication. Journal of Virology, 2011, 85, 1900-1905.	1.5	72
137	A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity, 2021, 54, 542-556.e9.	6.6	72
138	Structure and Function of the 3′ Terminal Six Nucleotides of the West Nile Virus Genome in Viral Replication. Journal of Virology, 2004, 78, 8159-8171.	1.5	71
139	SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12, 3587.	5.8	71
140	Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 3935-3952.	2.9	70
141	Targeting dengue virus NS4B protein for drug discovery. Antiviral Research, 2015, 118, 39-45.	1.9	69
142	Dengue NS2A Protein Orchestrates Virus Assembly. Cell Host and Microbe, 2019, 26, 606-622.e8.	5.1	68
143	Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infection, Genetics and Evolution, 2015, 32, 165-177.	1.0	67
144	Tetracycline-Inducible Packaging Cell Line for Production of Flavivirus Replicon Particles. Journal of Virology, 2004, 78, 531-538.	1.5	66

#	Article	IF	CITATIONS
145	Crystal Structure of Enterovirus 71 RNA-Dependent RNA Polymerase Complexed with Its Protein Primer VPg: Implication for a <i>trans</i> Mechanism of VPg Uridylylation. Journal of Virology, 2013, 87, 5755-5768.	1.5	66
146	Potential High-Throughput Assay for Screening Inhibitors of West Nile Virus Replication. Journal of Virology, 2003, 77, 12901-12906.	1.5	65
147	Inhibition of Dengue Virus RNA Synthesis by an Adenosine Nucleoside. Antimicrobial Agents and Chemotherapy, 2010, 54, 2932-2939.	1.4	65
148	A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nature Communications, 2018, 9, 3067.	5.8	65
149	West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. Journal of Virology, 2017, 91, .	1.5	63
150	Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Frontiers in Biology, 2010, 5, 286-303.	0.7	62
151	The search for nucleoside/nucleotide analog inhibitors of dengue virus. Antiviral Research, 2015, 122, 12-19.	1.9	62
152	Activation of Peripheral Blood Mononuclear Cells by Dengue Virus Infection Depotentiates Balapiravir. Journal of Virology, 2014, 88, 1740-1747.	1.5	60
153	RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. Journal of Virology, 2017, 91, .	1.5	60
154	Inhibition of Enterovirus 71 by Adenosine Analog NITD008. Journal of Virology, 2014, 88, 11915-11923.	1.5	59
155	Inhibitors of HIV-1 attachment. Part 2: An initial survey of indole substitution patterns. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1977-1981.	1.0	58
156	Dengue Therapeutics, Chemoprophylaxis, and Allied Tools: State of the Art and Future Directions. PLoS Neglected Tropical Diseases, 2014, 8, e3025.	1.3	58
157	Polymerases of hepatitis C viruses and flaviviruses: Structural and mechanistic insights and drug development. Antiviral Research, 2014, 105, 8-16.	1.9	58
158	Antiâ€Dengueâ€Virus Activity and Structure–Activity Relationship Studies of Lycorine Derivatives. ChemMedChem, 2014, 9, 1522-1533.	1.6	58
159	A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients. EBioMedicine, 2017, 17, 157-162.	2.7	58
160	Lead Optimization of Spiropyrazolopyridones: A New and Potent Class of Dengue Virus Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 344-348.	1.3	57
161	Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and $2\hat{a}\in^2$ -O methyltransferase activity in dengue virus. Virology, 2010, 402, 52-60.	1.1	55
162	A Conserved Pocket in the Dengue Virus Polymerase Identified through Fragment-based Screening. Journal of Biological Chemistry, 2016, 291, 8541-8548.	1.6	55

#	Article	IF	CITATIONS
163	<i>N</i> -Sulfonylanthranilic Acid Derivatives as Allosteric Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase. Journal of Medicinal Chemistry, 2009, 52, 7934-7937.	2.9	54
164	Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Research, 2013, 97, 198-205.	1.9	54
165	Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biology, 2021, 19, e3001284.	2.6	54
166	Genetic Interactions among the West Nile Virus Methyltransferase, the RNA-Dependent RNA Polymerase, and the 5′ Stem-Loop of Genomic RNA. Journal of Virology, 2008, 82, 7047-7058.	1.5	53
167	A Chimeric Dengue Virus Vaccine using Japanese Encephalitis Virus Vaccine Strain SA14-14-2 as Backbone Is Immunogenic and Protective against Either Parental Virus in Mice and Nonhuman Primates. Journal of Virology, 2013, 87, 13694-13705.	1.5	53
168	A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20190-20197.	3.3	53
169	Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. ELife, 2021, 10, .	2.8	53
170	Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase. Journal of Biological Chemistry, 2010, 285, 32586-32595.	1.6	52
171	Synergistic Suppression of Dengue Virus Replication Using a Combination of Nucleoside Analogs and Nucleoside Synthesis Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 2086-2093.	1.4	52
172	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	6.6	52
173	Zika Virus NS2A-Mediated Virion Assembly. MBio, 2019, 10, .	1.8	51
174	A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence. Cell, 2021, 184, 2229-2238.e13.	13.5	51
175	Incidence and effects of West Nile virus infection in vaccinated and unvaccinated horses in California. Veterinary Research, 2007, 38, 109-116.	1.1	50
176	Inhibitors of HIV-1 attachment. Part 4: A study of the effect of piperazine substitution patterns on antiviral potency in the context of indole-based derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5140-5145.	1.0	49
177	Inhibition of Dengue Virus by an Ester Prodrug of an Adenosine Analog. Antimicrobial Agents and Chemotherapy, 2010, 54, 3255-3261.	1.4	48
178	The Helical Domains of the Stem Region of Dengue Virus Envelope Protein Are Involved in both Virus Assembly and Entry. Journal of Virology, 2011, 85, 5159-5171.	1.5	48
179	Determinants of Dengue Virus NS4A Protein Oligomerization. Journal of Virology, 2015, 89, 6171-6183.	1.5	48
180	Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus. Journal of Virology, 2016, 90, 5735-5749.	1.5	48

#	Article	IF	CITATIONS
181	A Fluorescence-Based Alkaline Phosphatase–Coupled Polymerase Assay for Identification of Inhibitors of Dengue Virus RNA-Dependent RNA Polymerase. Journal of Biomolecular Screening, 2011, 16, 201-210.	2.6	47
182	Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorganic and Medicinal Chemistry, 2012, 20, 6123-6133.	1.4	47
183	The Stem Region of Premembrane Protein Plays an Important Role in the Virus Surface Protein Rearrangement during Dengue Maturation. Journal of Biological Chemistry, 2012, 287, 40525-40534.	1.6	47
184	Inhibitors of HIV-1 attachment. Part 7: Indole-7-carboxamides as potent and orally bioavailable antiviral agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 198-202.	1.0	46
185	InÂvitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Research, 2016, 130, 46-49.	1.9	46
186	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
187	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	2.3	46
188	Antiviral effect of interferon lambda against West Nile virus. Antiviral Research, 2009, 83, 53-60.	1.9	45
189	A Translation Inhibitor That Suppresses Dengue Virus <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 4072-4080.	1.4	43
190	Enterovirus 71 VPg Uridylation Uses a Two-Molecular Mechanism of 3D Polymerase. Journal of Virology, 2012, 86, 13662-13671.	1.5	43
191	Did Zika Virus Mutate to Cause Severe Outbreaks?. Trends in Microbiology, 2018, 26, 877-885.	3.5	43
192	NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Science Translational Medicine, 2021, 13, .	5.8	43
193	West Nile Virus Drug Discovery. Viruses, 2013, 5, 2977-3006.	1.5	42
194	Recovery of Soluble, Active Recombinant Protein from Inclusion Bodies. BioTechniques, 1997, 23, 1036-1038.	0.8	41
195	Flexibility of NS5 Methyltransferase-Polymerase Linker Region Is Essential for Dengue Virus Replication. Journal of Virology, 2015, 89, 10717-10721.	1.5	41
196	Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nature Communications, 2019, 10, 1324.	5.8	41
197	A multidimensional platform for the purification of non-coding RNA species. Nucleic Acids Research, 2013, 41, e168-e168.	6.5	40
198	Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. Journal of General Virology, 2014, 95, 806-815.	1.3	40

#	Article	IF	CITATIONS
199	Highly Conserved Residues in the Helical Domain of Dengue Virus Type 1 Precursor Membrane Protein Are Involved in Assembly, Precursor Membrane (prM) Protein Cleavage, and Entry. Journal of Biological Chemistry, 2014, 289, 33149-33160.	1.6	40
200	Evasion of early innate immune response by 2′- O -methylation of dengue genomic RNA. Virology, 2016, 499, 259-266.	1.1	40
201	Strategies for Zika drug discovery. Current Opinion in Virology, 2019, 35, 19-26.	2.6	40
202	The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling. Journal of Virology, 2016, 90, 6538-6548.	1.5	39
203	A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine. EBioMedicine, 2017, 17, 145-156.	2.7	39
204	Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrobial Agents and Chemotherapy, 2022, 66, e0022222.	1.4	39
205	Inhibitors of HIV-1 attachment. Part 3: A preliminary survey of the effect of structural variation of the benzamide moiety on antiviral activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5136-5139.	1.0	38
206	The Interface between Methyltransferase and Polymerase of NS5 Is Essential for Flavivirus Replication. PLoS Neglected Tropical Diseases, 2014, 8, e2891.	1.3	38
207	CCR2 Signaling Restricts SARS-CoV-2 Infection. MBio, 2021, 12, e0274921.	1.8	38
208	Fragile X mental retardation protein is a Zika virus restriction factor that is antagonized by subgenomic flaviviral RNA. ELife, 2018, 7, .	2.8	37
209	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
210	Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells. Antimicrobial Agents and Chemotherapy, 2021, 65, e0060221.	1.4	37
211	Inhibitors of HIV-1 attachment. Part 8: The effect of C7-heteroaryl substitution on the potency, and in vitro and in vivo profiles of indole-based inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 203-208.	1.0	36
212	The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. Npj Vaccines, 2021, 6, 44.	2.9	36
213	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	5.1	36
214	Detection of Antibodies to West Nile Virus in Equine Sera Using Microsphere Immunoassay. Journal of Veterinary Diagnostic Investigation, 2006, 18, 392-395.	0.5	35
215	Evaluation of a Novel Reporter Virus Neutralization Test for Serological Diagnosis of Zika and Dengue Virus Infection. Journal of Clinical Microbiology, 2017, 55, 3028-3036.	1.8	35
216	Crystal Structure of the Dengue Virus Methyltransferase Bound to a 5′-Capped Octameric RNA. PLoS ONE, 2010, 5, e12836.	1.1	34

#	Article	IF	CITATIONS
217	Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. Journal of Clinical Investigation, 2018, 128, 4980-4991.	3.9	34
218	Recent Advances in Flavivirus Antiviral Drug Discovery and Vaccine Development. Recent Patents on Anti-infective Drug Discovery, 2006, 1, 45-55.	0.5	33
219	Identification and characterization of inhibitors of West Nile virus. Antiviral Research, 2009, 83, 71-79.	1.9	33
220	A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Molecular Therapy, 2022, 30, 1897-1912.	3.7	33
221	Modulation of inflammation and pathology during dengue virus infection by p38 MAPK inhibitor SB203580. Antiviral Research, 2014, 110, 151-157.	1.9	32
222	Genetic and biochemical characterizations of Zika virus NS2A protein. Emerging Microbes and Infections, 2019, 8, 585-602.	3.0	32
223	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
224	NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues. Journal of Virology, 2019, 94, .	1.5	31
225	Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Interferon and Cytokine Research, 2020, 40, 543-548.	0.5	31
226	Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection. Antiviral Research, 2015, 122, 39-45.	1.9	30
227	High-Throughput Fitness Profiling of Zika Virus E Protein Reveals Different Roles for Glycosylation during Infection of Mammalian and Mosquito Cells. IScience, 2018, 1, 97-111.	1.9	29
228	Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nature Communications, 2021, 12, 595.	5.8	29
229	Secondary Structure and Membrane Topology of the Fullâ€Length Dengue Virus NS4B in Micelles. Angewandte Chemie - International Edition, 2016, 55, 12068-12072.	7.2	28
230	Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Medicinal Research Reviews, 2021, 41, 1375-1426.	5.0	28
231	Restriction of Zika Virus by Host Innate Immunity. Cell Host and Microbe, 2016, 19, 566-567.	5.1	27
232	Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Neglected Tropical Diseases, 2020, 14, e0008413.	1.3	27
233	A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Scientific Reports, 2021, 11, 2229.	1.6	27
234	Omicron: a drug developer's perspective. Emerging Microbes and Infections, 2022, 11, 208-211.	3.0	27

#	Article	IF	CITATIONS
235	Molecular detection of West Nile virus RNA. Expert Review of Molecular Diagnostics, 2003, 3, 357-366.	1.5	26
236	Flavivirus Entry Inhibitors. ACS Infectious Diseases, 2015, 1, 428-434.	1.8	26
237	Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5- <i>b</i>]pyridine-7,3′-indoline]-2′,5(3 <i>H</i>)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. Journal of Medicinal Chemistry, 2019. 62. 7941-7960.	2.9	26
238	SARS-CoV-2 productively infects primary human immune system cells <i>in vitro</i> and in COVID-19 patients. Journal of Molecular Cell Biology, 2022, 14, .	1.5	26
239	Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Research, 2016, 211, 17-24.	1.1	25
240	Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathogens, 2019, 15, e1007996.	2.1	25
241	Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. Journal of General Virology, 2015, 96, 1264-1275.	1.3	24
242	K48-linked polyubiquitination of dengue virus NS1 protein inhibits its interaction with the viral partner NS4B. Virus Research, 2018, 246, 1-11.	1.1	24
243	Targeting the Achilles Heel of Mosquito-Borne Viruses for Antiviral Therapy. ACS Infectious Diseases, 2019, 5, 4-8.	1.8	24
244	Anti-infectives: Can cellular screening deliver?. Current Opinion in Chemical Biology, 2011, 15, 529-533.	2.8	23
245	Small Molecules and Antibodies for Zika Therapy. Journal of Infectious Diseases, 2017, 216, S945-S950.	1.9	23
246	Zika Virus Epidemic in Brazil. II. Post-Mortem Analyses of Neonates with Microcephaly, Stillbirths, and Miscarriage. Journal of Clinical Medicine, 2018, 7, 496.	1.0	23
247	Attenuated activation of pulmonary immune cells in mRNA-1273–vaccinated hamsters after SARS-CoV-2 infection. Journal of Clinical Investigation, 2021, 131, .	3.9	23
248	Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Research, 2022, 205, 105381.	1.9	23
249	Using recombination-dependent lethal mutations to stabilize reporter flaviviruses for rapid serodiagnosis and drug discovery. EBioMedicine, 2020, 57, 102838.	2.7	22
250	Cross-neutralization of Omicron BA.1 against BA.2 and BA.3 SARS-CoV-2. Nature Communications, 2022, 13, .	5.8	22
251	Nonconsensus West Nile Virus Genomes Arising during Mosquito Infection Suppress Pathogenesis and Modulate Virus Fitness <i>In Vivo</i> . Journal of Virology, 2011, 85, 12605-12613.	1.5	21
252	Identifying Initiation and Elongation Inhibitors of Dengue Virus RNA Polymerase in a High-Throughput Lead-Finding Campaign. Journal of Biomolecular Screening, 2015, 20, 153-163.	2.6	21

#	Article	IF	CITATIONS
253	Development of a stable Gaussia luciferase enterovirus 71 reporter virus. Journal of Virological Methods, 2015, 219, 62-66.	1.0	21
254	Zika virus infection elicits auto-antibodies to C1q. Scientific Reports, 2018, 8, 1882.	1.6	21
255	Susceptibility to SARS-CoV-2 of Cell Lines and Substrates Commonly Used to Diagnose and Isolate Influenza and Other Viruses. Emerging Infectious Diseases, 2021, 27, 1380-1392.	2.0	21
256	Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Antiviral Research, 2014, 111, 78-81.	1.9	20
257	Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerging Microbes and Infections, 2019, 8, 1126-1138.	3.0	20
258	A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Reports, 2022, 39, 110655.	2.9	20
259	Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2324-2327.	1.0	19
260	A single dose of replication-competent VSV-vectored vaccine expressing SARS-CoV-2 S1 protects against virus replication in a hamster model of severe COVID-19. Npj Vaccines, 2021, 6, 91.	2.9	19
261	A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
262	A cocrystal structure of dengue capsid protein in complex of inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17992-18001.	3.3	18
263	Identifying optimal capsid duplication length for the stability of reporter flaviviruses. Emerging Microbes and Infections, 2020, 9, 2256-2265.	3.0	17
264	Topoisomerase III-Î ² is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	1.9	17
265	Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. Journal of Virology, 2020, 94, .	1.5	17
266	Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Research, 2012, 95, 216-223.	1.9	16
267	Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design. Advances in Experimental Medicine and Biology, 2018, 1062, 187-198.	0.8	16
268	Use of the immunoglobulin G avidity assay to differentiate between recent Zika and past dengue virus infections. Clinical Science, 2019, 133, 859-867.	1.8	16
269	A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1423-1429.	1.0	16
270	Dysregulation of Ephrin receptor and PPAR signaling pathways in neural progenitor cells infected by Zika virus. Emerging Microbes and Infections, 2020, 9, 2046-2060.	3.0	16

#	Article	IF	CITATIONS
271	SARS-CoV-2 Variants and Vaccination. Zoonoses, 2022, 2, .	0.5	16
272	Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication. Molecular Cell, 2022, 82, 1631-1642.e6.	4.5	16
273	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	2.9	16
274	Stabilization of dengue virus polymerase in de novo initiation assay provides advantages for compound screening. Antiviral Research, 2015, 119, 36-46.	1.9	15
275	Zika virus: a new threat from mosquitoes. Science China Life Sciences, 2016, 59, 440-442.	2.3	15
276	Construction of Stable Reporter Flaviviruses and Their Applications. Viruses, 2020, 12, 1082.	1.5	15
277	A replication-defective Japanese encephalitis virus (JEV) vaccine candidate with NS1 deletion confers dual protection against JEV and West Nile virus in mice. Npj Vaccines, 2020, 5, 73.	2.9	15
278	Unraveling a Flavivirus Enigma. Science, 2014, 343, 849-850.	6.0	14
279	Flavivirus NS5 Prevents the InSTATement of IFN. Cell Host and Microbe, 2014, 16, 269-271.	5.1	14
280	An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. Npj Vaccines, 2019, 4, 48.	2.9	14
281	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	2.9	14
282	JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. MBio, 2022, 13, e0337721.	1.8	14
283	Live attenuated vaccine: the first clinically approved dengue vaccine?. Expert Review of Vaccines, 2014, 13, 185-188.	2.0	13
284	Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening. Antiviral Research, 2017, 141, 38-47.	1.9	13
285	Using a Virion Assembly-Defective Dengue Virus as a Vaccine Approach. Journal of Virology, 2018, 92, .	1.5	13
286	Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathogens, 2020, 16, e1008538.	2.1	13
287	Noninvasive bioluminescence imaging of dengue virus infection in the brain of A129 mice. Applied Microbiology and Biotechnology, 2013, 97, 4589-4596.	1.7	11
288	A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds. PLoS ONE, 2013, 8, e69479.	1.1	11

#	Article	IF	CITATIONS
289	Short Direct Repeats in the 3′ Untranslated Region Are Involved in Subgenomic Flaviviral RNA Production. Journal of Virology, 2020, 94, .	1.5	11
290	Zika structural genes determine the virulence of African and Asian lineages. Emerging Microbes and Infections, 2020, 9, 1023-1033.	3.0	11
291	Reverse Genetics of Zika Virus. Methods in Molecular Biology, 2017, 1602, 47-58.	0.4	10
292	Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. Journal of Virology, 2020, 94, .	1.5	10
293	Zika virus induces neuronal and vascular degeneration in developing mouse retina. Acta Neuropathologica Communications, 2021, 9, 97.	2.4	10
294	The arrival of SARS-CoV-2–neutralizing antibodies in a currently available commercial immunoglobulin. Journal of Allergy and Clinical Immunology, 2022, 149, 1958-1959.	1.5	10
295	Potential Mechanisms for Enhanced Zika Epidemic and Disease. ACS Infectious Diseases, 2018, 4, 656-659.	1.8	9
296	Replication-Defective West Nile Virus with NS1 Deletion as a New Vaccine Platform for Flavivirus. Journal of Virology, 2019, 93, .	1.5	9
297	Development of a FACS-based assay for evaluating antiviral potency of compound in dengue infected peripheral blood mononuclear cells. Journal of Virological Methods, 2014, 196, 18-24.	1.0	8
298	Therapeutics for Neglected Infectious Diseases: Progress and Challenge. ACS Infectious Diseases, 2015, 1, 76-78.	1.8	8
299	Design, synthesis and biological evaluation of spiropyrazolopyridone derivatives as potent dengue virus inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127162.	1.0	8
300	Rational design of West Nile virus vaccine through large replacement of 3′ UTR with internal poly(A). EMBO Molecular Medicine, 2021, 13, e14108.	3.3	8
301	Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. Npj Vaccines, 2021, 6, 139.	2.9	8
302	A Single-Round Infection Fluorescent SARS-CoV-2 Neutralization Test for COVID-19 Serological Testing at a Biosafety Level-2 Laboratory. Viruses, 2022, 14, 1211.	1.5	8
303	Drug discovery for the developing world: progress at the Novartis Institute for Tropical Diseases. Nature Reviews Drug Discovery, 2015, 14, 442-444.	21.5	7
304	The role of sequence context, nucleotide pool balance and stress in 2′-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA. Nucleic Acids Research, 2016, 44, 8962-8975.	6.5	7
305	Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants. PLoS ONE, 2018, 13, e0189262.	1.1	7
306	Evaluation of Cellular and Serological Responses to Acute SARS-CoV-2 Infection Demonstrates the Functional Importance of the Receptor-Binding Domain. Journal of Immunology, 2021, 206, 2605-2613.	0.4	7

#	Article	IF	CITATIONS
307	The challenges of dengue drug discovery and development. Clinical Investigation, 2014, 4, 683-685.	0.0	6
308	A single residue in the αB helix of the E protein is critical for Zika virus thermostability. Emerging Microbes and Infections, 2018, 7, 1-15.	3.0	6
309	Genetic stability of live-attenuated Zika vaccine candidates. Antiviral Research, 2019, 171, 104596.	1.9	6
310	Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Neglected Tropical Diseases, 2021, 15, e0009183.	1.3	6
311	A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model. PLoS ONE, 2022, 17, e0261821.	1.1	6
312	Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angewandte Chemie, 2016, 128, 12247-12251.	1.6	5
313	Adulthood Sequelae of Congenital Zika Virus Infection in Mice. EBioMedicine, 2017, 20, 11-12.	2.7	5
314	Anti-Zika virus RNAi in neural progenitor cells. Cell Research, 2019, 29, 261-262.	5.7	5
315	A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. Npj Vaccines, 2021, 6, 27.	2.9	5
316	A modified porous silicon microparticle potentiates protective systemic and mucosal immunity for SARS-CoV-2 subunit vaccine. Translational Research, 2022, 249, 13-27.	2.2	5
317	Recent developments in West Nile virus vaccine and antiviral therapy. Expert Opinion on Therapeutic Patents, 2003, 13, 1113-1125.	2.4	4
318	Repurposing an HIV Drug for Zika Virus Therapy. Molecular Therapy, 2019, 27, 2064-2066.	3.7	4
319	BNT162b2-elicited neutralization of Delta plus, Lambda, Mu, B.1.1.519, and Theta SARS-CoV-2 variants. Npj Vaccines, 2022, 7, 41.	2.9	4
320	Difficulties and advancements in developing drugs for the treatment of dengue fever. Expert Opinion on Orphan Drugs, 2013, 1, 947-949.	0.5	3
321	Reverse genetic approaches for the development of Zika vaccines and therapeutics. Current Opinion in Virology, 2020, 44, 7-15.	2.6	3
322	Using Next Generation Sequencing to Study the Genetic Diversity of Candidate Live Attenuated Zika Vaccines. Vaccines, 2020, 8, 161.	2.1	3
323	Reporter Virus Neutralization Test Evaluation for Dengue and Zika Virus Diagnosis in Flavivirus Endemic Area. Pathogens, 2021, 10, 840.	1.2	3
324	Infection Kinetics and Transmissibility of a Reanimated Dengue Virus Serotype 4 Identified Originally in Wild Aedes aegypti From Florida. Frontiers in Microbiology, 2021, 12, 734903.	1.5	3

#	Article	IF	CITATIONS
325	A virus-type specific serological diagnosis of flavivirus infection using virus-like particles. Virologica Sinica, 2009, 24, 136-145.	1.2	2
326	Targeting vesicle size. Nature Materials, 2018, 17, 955-956.	13.3	2
327	Intravenous delivery of GS-441524 is efficacious in the African green monkey model of SARS-CoV-2 infection. Antiviral Research, 2022, 203, 105329.	1.9	2
328	Report of the fifth symposium on emerging viral diseases. Virologica Sinica, 2013, 28, 63-64.	1.2	0
329	IMMU-47. HARNESSING ZIKA VIRUS (ZIKV) ONCOLYTIC ACTIVITY IN BRAIN TUMORS. Neuro-Oncology, 2018, 20, vi131-vi132.	0.6	Ο
330	An Interview with Pei-Yong Shi, PhD. Journal of Interferon and Cytokine Research, 2021, 41, 197-199.	0.5	0
331	IMMU-43. ZIKA VIRUS TO TREAT GLIOMA: TURNING COLD TUMORS HOT. Neuro-Oncology, 2020, 22, ii114-ii114.	0.6	Ο
332	Erratum for Vanderheiden et al., "CCR2 Signaling Restricts SARS-CoV-2 Infection― MBio, 2022, , e0025922.	1.8	0
333	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		Ο
334	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0
335	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		Ο
336	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0
337	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0
338	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0