
Giulia Chiesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of ApoA-I in ApoEKO Mice Causes Skin Xanthomas, Worsening of Inflammation, and Increased Coronary Atherosclerosis in the Absence of Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 839-856.	2.4	6
2	Aortic Gene Expression Profiles Show How ApoA-I Levels Modulate Inflammation, Lysosomal Activity, and Sphingolipid Metabolism in Murine Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 651-667.	2.4	12
3	Rupatadine treatment is associated to atherosclerosis worsening and altered T lymphocyte recruitment. Thrombosis and Haemostasis, 2021, 0, .	3.4	0
4	reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization. Scientific Reports, 2021, 11, 23458.	3.3	6
5	Fenretinide treatment accelerates atherosclerosis development in apoEâ€deficient mice in spite of beneficial metabolic effects. British Journal of Pharmacology, 2020, 177, 328-345.	5.4	21
6	Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovascular Research, 2020, 116, 1458-1472.	3.8	15
7	The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients, 2020, 12, 79.	4.1	52
8	liputils: a Python module to manage individual fatty acid moieties from complex lipids. Scientific Reports, 2020, 10, 13368.	3.3	3
9	Fatâ€Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Lowâ€Protein Diet. Molecular Nutrition and Food Research, 2020, 64, e1900835.	3.3	11
10	Infusions of Large Synthetic HDL Containing Trimeric apoA-I Stabilize Atherosclerotic Plaques in Hypercholesterolemic Rabbits. Canadian Journal of Cardiology, 2019, 35, 1400-1408.	1.7	11
11	Topiramate protects apoE-deficient mice from kidney damage without affecting plasma lipids. Pharmacological Research, 2019, 141, 189-200.	7.1	21
12	Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis, 2018, 271, 156-165.	0.8	25
13	Effects of Vegetable Proteins on Hypercholesterolemia and Gut Microbiota Modulation. Nutrients, 2018, 10, 1249.	4.1	26
14	Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoEâ^'/â^' mice. Scientific Reports, 2017, 7, 44503.	3.3	37
15	Effect of Dietary Components from Antarctic Krill on Atherosclerosis in apoEâ€Deficient Mice. Molecular Nutrition and Food Research, 2017, 61, 1700098.	3.3	40
16	L-homoarginine administration reduces neointimal hyperplasia in balloon-injured rat carotids. Thrombosis and Haemostasis, 2016, 116, 400-402.	3.4	22
17	Nutraceuticals and Bioactive Components from Fish for Dyslipidemia and Cardiovascular Risk Reduction. Marine Drugs, 2016, 14, 113.	4.6	36
18	High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides. Circulation Journal, 2015, 79, 2523-2528.	1.6	23

#	Article	IF	CITATIONS
19	High-density lipoprotein deficiency in genetically modified mice deeply affects skin morphology: A structural and ultrastructural study. Experimental Cell Research, 2015, 338, 105-112.	2.6	17
20	Magnetic Resonance Imaging Visualization of Vulnerable Atherosclerotic Plaques at the Brachiocephalic Artery of Apolipoprotein E Knockout Mice by the Blood-Pool Contrast Agent B22956/1. Molecular Imaging, 2014, 13, 7290.2014.00012.	1.4	16
21	A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in ApoE-Deficient Mice. PLoS ONE, 2014, 9, e97598.	2.5	40
22	Prevalence of classical CD14++/CD16 â^' but not of intermediate CD14++/CD16 + monocytes in hypoalphalipoproteinemia. International Journal of Cardiology, 2013, 168, 2886-2889.	1.7	15
23	Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats. British Journal of Nutrition, 2013, 110, 1394-1401.	2.3	28
24	An Immunomodulating Fatty Acid Analogue Targeting Mitochondria Exerts Anti-Atherosclerotic Effect beyond Plasma Cholesterol-Lowering Activity in apoE-/- Mice. PLoS ONE, 2013, 8, e81963.	2.5	17
25	Reduced biliary sterol output with no change in total faecal excretion in mice expressing a human apolipoprotein A″ variant. Liver International, 2012, 32, 1363-1371.	3.9	17
26	Acute ApoA-I Milano administration induces plaque regression and stabilisation in the long term. Thrombosis and Haemostasis, 2012, 108, 1246-1248.	3.4	18
27	Cholesterol-lowering effect of dietary Lupinus angustifolius proteins in adult rats through regulation of genes involved in cholesterol homeostasis. Food Chemistry, 2012, 132, 1475-1479.	8.2	29
28	The intracellular quality control system down-regulates the secretion of amyloidogenic apolipoprotein A-I variants: A possible impact on the natural history of the disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 87-93.	3.8	22
29	Rosuvastatin does not affect human apolipoprotein A-I expression in genetically modified mice: a clue to the disputed effect of statins on HDL. British Journal of Pharmacology, 2011, 164, 1460-1468.	5.4	22
30	Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism. Molecular Nutrition and Food Research, 2010, 54, S24-30.	3.3	44
31	Intracellular ANKRD1 protein levels are regulated by 26S proteasomeâ€mediated degradation. FEBS Letters, 2009, 583, 2486-2492.	2.8	22
32	HDL Therapy for the Treatment of Cardiovascular Diseases. Current Vascular Pharmacology, 2009, 7, 550-556.	1.7	20
33	Reduced mammary tumor progression in a transgenic mouse model fed an isoflavoneâ€poor soy protein concentrate. Molecular Nutrition and Food Research, 2008, 52, 1121-1129.	3.3	9
34	Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Human Mutation, 2008, 29, 468-474.	2.5	52
35	Dose-Related Effects of Repeated ETC-216 (Recombinant Apolipoprotein A-IMilano/1-Palmitoyl-2-Oleoyl) Tj ETQq1 American College of Cardiology, 2008, 51, 1098-1103.	1 0.7843 2.8	14 rgBT /O 87
36	Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit model. British Journal of Nutrition, 2008, 100, 707-710.	2.3	61

#	Article	IF	CITATIONS
37	Long Pentraxin 3, a Key Component of Innate Immunity, Is Modulated by High-Density Lipoproteins in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 925-931.	2.4	137
38	Acute effects of high-density lipoproteins: biochemical basis and clinical findings. Current Opinion in Cardiology, 2008, 23, 379-385.	1.8	22
39	Th-P15:199 Modulation of pentraxin 3 expression in endothelial cells: Role of HDL. Atherosclerosis Supplements, 2006, 7, 537.	1.2	0
40	Tu-W23:7 Effect of high cholesterol diet on cholesterol and bile acid metabolism in A-IM and A-I transgenic mice. Atherosclerosis Supplements, 2006, 7, 167.	1.2	0
41	We-P14:483 Evaluation of nutritional and biological properties of a lupin protein isolate in Sprague-Dawley rats. Atherosclerosis Supplements, 2006, 7, 453-454.	1.2	0
42	Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: a biochemical, histological and electrophysiological study. British Journal of Pharmacology, 2006, 149, 909-919.	5.4	50
43	Lupin <i>(Lupinus albus)</i> Protein Isolate (L-ISO) Has Adequate Nutritional Value and Reduces Large Intestinal Weight in Rats after Restricted and ad libitum Feeding. Annals of Nutrition and Metabolism, 2006, 50, 528-537.	1.9	18
44	Reference maps of mouse serum acute-phase proteins: Changes with LPS-induced inflammation and apolipoproteinâ€A-I and A-II transgenes. Proteomics, 2005, 5, 4245-4253.	2.2	53
45	A simple method for the characterization and quantification of soy isoflavone metabolites in the serum of MMTV-Neu mice using high-performance liquid chromatography/electrospray ionization mass spectrometry with multiple reaction monitoring. Rapid Communications in Mass Spectrometry, 2005, 19, 153-161.	1.5	15
46	High-Density Lipoproteins Induce Transforming Growth Factor-β2Expression in Endothelial Cells. Circulation, 2005, 111, 2805-2811.	1.6	84
47	Apolipoprotein A-I and the molecular variant apoA-IMilano: Evaluation of the antiatherogenic effects in knock-in mouse model. Atherosclerosis, 2005, 183, 222-229.	0.8	42
48	Evaluation of a soft atherosclerotic lesion in the rabbit aorta by an invasive IVUS method versus a non-invasive MRI technology. Atherosclerosis, 2004, 174, 25-33.	0.8	21
49	Soy proteins reduce progression of a focal lesion and lipoprotein oxidiability in rabbits fed a cholesterol-rich diet. Atherosclerosis, 2003, 171, 163-170.	0.8	25
50	Recombinant apolipoprotein A-I[Formula: See Text]: a novel agent for the induction of regression of atherosclerotic plaques. Annals of Medicine, 2003, 35, 267-273.	3.8	24
51	Targeted Replacement of Mouse Apolipoprotein A-I with Human ApoA-I or the Mutant ApoA-IMilano. Journal of Biological Chemistry, 2003, 278, 4740-4746.	3.4	30
52	Apolipoprotein A-IMilano: current perspectives. Current Opinion in Lipidology, 2003, 14, 159-163.	2.7	85
53	Recombinant Apolipoprotein A-IMilanoInfusion Into Rabbit Carotid Artery Rapidly Removes Lipid From Fatty Streaks. Circulation Research, 2002, 90, 974-980.	4.5	192
54	Mast Cell Chymase Degrades ApoE and ApoA-II in ApoA-I–Knockout Mouse Plasma and Reduces Its Ability to Promote Cellular Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1475-1481.	2.4	53

#	Article	IF	CITATIONS
55	Omega-3 fatty acid ethyl esters increase heart rate variability in patients with coronary disease. Pharmacological Research, 2002, 45, 475-478.	7.1	70
56	Use of recombinant apolipoproteins in vascular diseases: the case of apoA-I. Current Opinion in Investigational Drugs, 2002, 3, 420-6.	2.3	10
57	Development of a lipid-rich, soft plaque in rabbits, monitored by histology and intravascular ultrasound. Atherosclerosis, 2001, 156, 277-287.	0.8	39
58	Increased Cholesterol Efflux Potential of Sera From ApoA-I _{Milano} Carriers and Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1257-1262.	2.4	114
59	Transgenic mice expressing a human apolipoprotein[a] allele. Journal of Lipid Research, 1999, 40, 994-1006.	4.2	18
60	Elevated triglycerides and low HDL cholesterol in transgenic mice expressing human apolipoprotein A-IMilano. Atherosclerosis, 1998, 136, 139-146.	0.8	19
61	Human Apolipoproteins A-I and A-II in Cell Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1417-1423.	2.4	45
62	A transgenic mouse model for the detection of cellular stress induced by toxic inorganic compounds. Nature Biotechnology, 1997, 15, 1392-1397.	17.5	41
63	Characterization of commercial antibodies for use in high resolution apo(a) phenotyping by immunoblot analysis. Clinica Chimica Acta, 1995, 240, 75-81.	1.1	5
64	Apo(a) Expression in Transgenic Micea. Annals of the New York Academy of Sciences, 1994, 714, 231-236.	3.8	0
65	Mechanisms of high-density lipoprotein reduction after probucol treatment: Changes in plasma cholesterol esterification/transfer and lipase-activities. Metabolism: Clinical and Experimental, 1993, 42, 229-235.	3.4	37
66	Sequence polymorphisms in the apolipoprotein (a) gene. Evidence for dissociation between apolipoprotein(a) size and plasma lipoprotein(a) levels Journal of Clinical Investigation, 1993, 91, 1630-1636.	8.2	111
67	Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a) Journal of Clinical Investigation, 1993, 92, 3029-3037.	8.2	227
68	Mechanisms of hdl reduction after probucol: Changes in cholesterol esterification/transfer and lipase activities. Pharmacological Research, 1992, 26, 30.	7.1	1
69	Activity profile of gemfibrozil on the major plasma lipoprotein parameters. European Journal of Epidemiology, 1992, 8, 120-124.	5.7	7
70	Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature, 1992, 360, 670-672.	27.8	279
71	Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations Journal of Clinical Investigation, 1992, 90, 52-60.	8.2	838
72	Management of lipoprotein-X accumulation in severe cholestasis by semi-selective LDL-apheresis. American Journal of Medicine, 1991, 90, 633-638.	1.5	1

#	Article	IF	CITATIONS
73	Probucol increases cholesteryl ester transfer protein activity in hypercholesterolaemic patients. European Journal of Clinical Investigation, 1991, 21, 384-388.	3.4	44
74	Predictability of low-density lipoprotein levels during apheretic treatment of hypercholesterolemia. European Journal of Clinical Investigation, 1991, 21, 209-214.	3.4	8
75	In vitro activity of probucol on cholesteryl ester transport. Lipids and Lipid Metabolism, 1990, 1045, 302-304.	2.6	8
76	Effects of probucol on the high density lipoprotein system in hypercholesterolaemic patients. Pharmacological Research, 1989, 21, 113-114.	7.1	2