Jean-Luc Daridon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2644502/jean-luc-daridon-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

105 2,402 27 45 g-index

111 2,681 3.3 5 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
105	Speed of Sound, Density, and Related Thermophysical Properties of the Methyl Caprate + Methyl Oleate Binary System from 0.1[MPa to 70[MPa at 303.15[K. <i>International Journal of Thermophysics</i> , 2022 , 43, 1	2.1	1
104	Fluid phase equilibria for the CO2 +12,3-dimethylbutane binary system from 291.91K to 373.11K. <i>Journal of Supercritical Fluids</i> , 2022 , 179, 105387	4.2	2
103	Predicting and Correlating Speed of Sound in Long-Chain Alkanes at High Pressure. <i>International Journal of Thermophysics</i> , 2022 , 43, 1	2.1	O
102	High-Pressure Phase Equilibria Measurements of the Carbon Dioxide + Cycloheptane Binary System. <i>Journal of Chemical & Engineering Data</i> , 2022 , 67, 176-181	2.8	0
101	Evaluation of the Influence of a Chemical Inhibitor on Asphaltene Destabilization and Deposition Mechanisms under Atmospheric and Oil Production Conditions Using QCM and AFM Techniques. <i>Energy & Description of Energy & De</i>	4.1	3
100	Computation of Isobaric Thermal Expansivity from Liquid Density Measurements. Application to Toluene. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 3961-3976	2.8	4
99	Density, Viscosity, and Derivative Properties of Diethylene Glycol Monoethyl Ether Under High Pressure and Temperature. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1457-1465	2.8	4
98	Comparing C5Pe and Asphaltenes under Temperature and Pressure Reservoir Conditions Using an Acoustic Wave Sensor. <i>Energy & Damp; Fuels</i> , 2021 , 35, 6600-6614	4.1	1
97	Fluid-fluid and fluid-solid phase equilibria in carbon dioxide⊡waxy systems 1. CO⊡-⊡n-C. <i>Fluid Phase Equilibria</i> , 2021 , 538, 113023	2.5	4
96	Density, Speed of Sound, Compressibility, and Excess Properties of the Carbon Dioxide + n-Heptadecane Binary Mixture from 10 to 70 MPa. <i>Journal of Chemical & Data</i> , 2021, 66, 3245-3257	2.8	2
95	Experimental determination and modelling of high-pressure phase behavior for the binary system CO2 + Lyclooctane. <i>Journal of Supercritical Fluids</i> , 2021 , 174, 105249	4.2	2
94	Combined Investigations of Fluid Phase Equilibria and FluidBolid Phase Equilibria in Complex CO2© rude Oil Systems under High Pressure. <i>Journal of Chemical & Complex Regimeering Data</i> , 2020 , 65, 335	7 -3 872	<u>,</u> 8
93	Excess volume, isothermal compressibility, isentropic compressibility and speed of sound of carbon dioxide+n-heptane binary mixture under pressure up to 70 MPa. II. Molecular simulations. <i>Journal of Supercritical Fluids</i> , 2020 , 164, 104890	4.2	3
92	Density, Speed of Sound, Compressibility and Related Excess Properties of Methane $+$ n-Heptane at $T = 303.15$ K and $p = 10$ to 70 MPa. <i>International Journal of Thermophysics</i> , 2020 , 41, 1	2.1	4
91	Thermophysical properties of simple molecular liquid mixtures: On the limitations of some force fields. <i>Journal of Molecular Liquids</i> , 2020 , 303, 112663	6	7
90	Understanding Asphaltene Fraction Behavior through Combined Quartz Crystal Resonator Sensor, FT-ICR MS, GPC ICP HR-MS, and AFM Characterization. Part I: Extrography Fractionations. <i>Energy & Energy & Energy</i>	4.1	14
89	Study of Liquid Diquid and Liquid Diquid Diapor Equilibria for Crude Oil Mixtures with Carbon Dioxide and Methane Using Short-Wave Infrared Imaging: Experimental and Thermodynamic Modeling. Energy & Samp; Fuels, 2020, 34, 14109-14123	4.1	5

(2017-2020)

88	Predicting the effect of pressure on biodiesel density at pressures of up to 200 MPa based on fatty acid alkyl ester profiles and density values at atmospheric pressure. <i>Fuel</i> , 2020 , 281, 118767	7.1	3
87	Density, Speed of Sound, Compressibility, and Excess Properties of Carbon Dioxide + n-Dodecane Binary Mixtures from 10 to 70 MPa. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 3187-3204	2.8	5
86	Revisiting asphaltenes instability predictions by probing destabiliztion using a fully immersed quartz crystal resonator. <i>Fuel</i> , 2019 , 251, 523-533	7.1	8
85	Speed of sound, density and derivative properties of binary mixtures HFE-7500 + Diisopropyl ether under high pressure. <i>Journal of Chemical Thermodynamics</i> , 2019 , 128, 19-33	2.9	4
84	High-Pressure Viscosity Measurements for the Binary Mixture HFE-7500 + Diisopropyl Ether. Journal of Chemical & Data, 2019, 64, 5332-5337	2.8	1
83	High pressure phase equilibria of carbon dioxide⊕∏h-alkanes mixtures: Experimental data and modeling. <i>Fluid Phase Equilibria</i> , 2018 , 463, 114-120	2.5	6
82	Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors. <i>Journal of Chemical Thermodynamics</i> , 2018 , 120, 1-12	2.9	23
81	Computation of Liquid Isothermal Compressibility from Density Measurements: An Application to Toluene. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 2162-2178	2.8	18
80	Excess volume, isothermal compressibility, isentropic compressibility and speed of sound of carbon dioxide + n-heptane binary mixture under pressure up to 70 MPa. I Experimental Measurements. Journal of Supercritical Fluids, 2018, 140, 218-232	4.2	11
79	Thermal conductivity of heavy, even-carbon number n-alkanes (C22ItoIC32). Fluid Phase Equilibria, 2018 , 477, 78-86	2.5	14
78	Paraffin solubility curves of diesel fuels from thermodynamic model adjusted through experimental DSC thermograms. <i>Fuel</i> , 2018 , 230, 266-273	7.1	2
77	Direct adjustment of wax thermodynamic model parameter to micro Differential Scanning Calorimetry thermograms. <i>Fluid Phase Equilibria</i> , 2017 , 436, 20-29	2.5	7
76	Speed of sound and derivative properties of hydrofluoroether fluid HFE-7500 under high pressure. Journal of Chemical Thermodynamics, 2017 , 112, 52-58	2.9	7
75	Speed of Sound, Density, and Derivative Properties of Tris(2-ethylhexyl) Trimellitate under High Pressure. <i>Journal of Chemical & Data</i> , 2017, 62, 1708-1715	2.8	12
74	In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: The Case of Tris(2-ethylhexyl) Trimellitate. <i>Journal of Chemical & Data</i> , 2017, 62, 2884-2895	2.8	18
73	Measurement of Phase Changes in Live Crude Oil Using an Acoustic Wave Sensor: Asphaltene Instability Envelope. <i>Energy & Discounty Sensor</i> 2017, 31, 9255-9267	4.1	10
72	Paraffin solubility and calorimetric data calculation using Peng-Robinson EoS and modified UNIQUAC models. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 156, 945-957	4.4	3
71	Determination of bubble point pressure of two live oils with injected nitrogen by quartz crystal resonator. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1065-1073	2.3	1

70	Speed of sound, density and derivative properties of diisopropyl ether under high pressure. <i>Fluid Phase Equilibria</i> , 2017 , 449, 148-155	2.5	9
69	Measurement of bubble point pressure in crude oils using an acoustic wave sensor. <i>Fluid Phase Equilibria</i> , 2016 , 427, 152-160	2.5	8
68	Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Myristate and Ethyl Myristate. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 398-403	2.8	25
67	Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. <i>Journal of Chemical & Data</i> , 2015, 60, 902-908	2.8	27
66	Viscosity measurements for squalane at high pressures to 350MPa from T=(293.15 to 363.15)K. Journal of Chemical Thermodynamics, 2014 , 69, 201-208	2.9	44
65	Reference Correlations for the Density and Viscosity of Squalane from 273 to 473 K at Pressures to 200 MPa. <i>Journal of Physical and Chemical Reference Data</i> , 2014 , 43, 013104	4.3	32
64	Speed of Sound, Density, and Derivative Properties of Methyl Oleate and Methyl Linoleate under High Pressure. <i>Journal of Chemical & Data</i> , 2013, 58, 2345-2354	2.8	20
63	Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure. <i>Journal of Chemical & Data</i> , 2013, 58, 1371-137	7 ^{2.8}	57
62	Experimental Densities and Speeds of Sound of Substituted Phenols and Their Modeling with the Prigogine Flory Patterson Model. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 2925-2931	2.8	23
61	High Pressure Density and Speed of Sound in Two Biodiesel Fuels. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 3392-3398	2.8	22
60	Probing Asphaltene Flocculation by a Quartz Crystal Resonator. Energy & Ene	174.1	18
59	An atomic contribution model for the prediction of speed of sound. <i>Fluid Phase Equilibria</i> , 2013 , 358, 108-113	2.5	6
58	Study of Asphaltenes Aggregation in Toluene/n-Heptane/CO2Mixtures under High-Pressure Conditions. <i>Energy & Conditions</i> , 2013, 27, 4598-4603	4.1	10
57	Gas Solubility Measurement in Heavy Oil and Extra Heavy Oil at Vapor Extraction (VAPEX) Conditions. <i>Energy & Discourse Energy </i>	4.1	17
56	Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels. <i>Fuel</i> , 2013 , 108, 840-845	7.1	32
55	Application of Wada Group Contribution Method to the Prediction of the Speed of Sound of Biodiesel. <i>Energy & Double Speed</i> 27, 1365-1370	4.1	20
54	Measurement and prediction of the speed of sound of biodiesel fuels. <i>Fuel</i> , 2013 , 103, 1018-1022	7.1	41
53	Novel data and a group contribution method for the prediction of the speed of sound and isentropic compressibility of pure fatty acids methyl and ethyl esters. <i>Fuel</i> , 2013 , 105, 466-470	7.1	27

(2008-2012)

52	High pressure thermophysical characterization of fuel used for testing and calibrating diesel injection systems. <i>Fuel</i> , 2012 , 98, 288-294	7.1	34	
51	Speed of Sound, Density, and Derivative Properties of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. <i>Journal of Chemical & Description of Chemical & Description</i> , 57, 2667-2676	2.8	52	
50	High pressure phase equilibria in methane + waxy systems. 3. Methane + a synthetic distribution of paraffin ranging from n-C13 to n-C22. <i>Fluid Phase Equilibria</i> , 2012 , 313, 32-37	2.5	8	
49	Viscosity measurements of liquids under pressure by using the quartz crystal resonators. <i>Review of Scientific Instruments</i> , 2011 , 82, 095114	1.7	15	
48	A phase comparison technique for sound velocity measurement in strongly dissipative liquids under pressure. <i>Journal of the Acoustical Society of America</i> , 2010 , 128, 672-8	2.2	6	
47	Characterization of Libyan Waxy Crude Oils. <i>Energy & Discours (Marger)</i> Energy 2010, 24, 3101-3107	4.1	31	
46	Electrical characterization of a quartz crystal in high pressure CO2 by impedance analysis. <i>High Pressure Research</i> , 2010 , 30, 72-77	1.6	1	
45	High pressure phase equilibria in methane+waxy systems. 2. Methane+waxy ternary mixture. <i>Fluid Phase Equilibria</i> , 2010 , 297, 149-153	2.5	17	
44	JouleThomson Inversion in VaporLiquidBolid Solution Systems. <i>International Journal of Thermophysics</i> , 2009 , 30, 1130-1143	2.1	4	
43	High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. <i>Journal of Supercritical Fluids</i> , 2009 , 48, 99-107	4.2	121	
42	Measurement under high pressure of the nonlinearity parameter B/A in glycerol at various temperatures. <i>Ultrasonics</i> , 2009 , 49, 668-75	3.5	17	
41	Comparison between Experimental and Theoretical Estimations of the Thermal Expansion, Concentration Expansion Coefficients, and Viscosity for Binary Mixtures under Pressures up to 20 MPa Journal of Chemical & Damering Data, 2009 , 54, 1710-1715	2.8	12	
40	Measurements under high pressure of ultrasonic wave velocity in glycerol 2009,		1	
39	Calculation of JouleIIhomson Inversion Curves for Multiphase Systems with Waxy Solid-phase Precipitation. <i>Energy & Energy & 2008</i> , 22, 4012-4018	4.1	4	
38	Pseudocomponent Delumping for Multiphase Systems with Waxy Solid Phase Precipitation <i>Energy & Energy </i>	4.1	6	
37	Solid[liquid Equilibria under High Pressure of Nine Pure n-Alkylbenzenes. <i>Journal of Chemical & Samp; Engineering Data</i> , 2008 , 53, 233-237	2.8	7	
36	High-pressure phase behaviour of the binary system {CO2 + cis-decalin} from (292.75 to 373.75) K. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1358-1363	2.9	14	
35	Phase equilibria measurements of CO2+methyl cyclopentane and CO2+isopropyl cyclohexane binary mixtures at elevated pressures. <i>Journal of Supercritical Fluids</i> , 2008 , 44, 155-163	4.2	35	

34	SolidDiquid Equilibria under High Pressure of Eight Pure n-Alkylcyclohexanes. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1250-1254	2.8	7
33	Bubble and Dew Points of Carbon Dioxide + a Five-Component Synthetic Mixture: Experimental Data and Modeling with the PPR78 Model. <i>Journal of Chemical & Data & Da</i>	1 8. 55	23
32	Accurate Global Thermophysical Characterization of Hydrofluoroethers through a Statistical Associating Fluid Theory Variable Range Approach, Based on New Experimental High-Pressure Volumetric and Acoustic Data. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6998-7007	3.9	15
31	CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. <i>Energy Conversion and Management</i> , 2007 , 48, 736-744	10.6	287
30	High pressure phase equilibria in methane+waxy systems. Fluid Phase Equilibria, 2007, 255, 193-199	2.5	39
29	A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 3447-61	3.4	76
28	Study of Pressure and Temperature Effects on Asphaltene Stability in Presence of CO2. <i>Energy & Energy Energy</i> 2006, 20, 1584-1590	4.1	76
27	Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. <i>Journal of Chemical Physics</i> , 2006 , 124, 024509	3.9	145
26	Optical fiber extrinsic refractometer to measure RI of samples in a high pressure and temperature systems: Application to wax and asphaltene precipitation measurements. <i>Fuel</i> , 2006 , 85, 2220-2228	7.1	14
25	Measurements of the Speed of Sound for Mixtures of Methane + Butane with a Particular Focus on the Critical State. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 673-676	2.8	7
24	The Limitations of the Cloud Point Measurement Techniques and the Influence of the Oil Composition on Its Detection. <i>Petroleum Science and Technology</i> , 2005 , 23, 1113-1128	1.4	71
23	Modeling high-pressure wax formation in petroleum fluids. <i>AICHE Journal</i> , 2005 , 51, 2089-2097	3.6	20
22	Paraffin crystallization in synthetic mixtures: Predictive local composition models revisited. <i>Fluid Phase Equilibria</i> , 2005 , 233, 28-33	2.5	16
21	Modelling Phase Equilibria in Systems with Organic Solid Solutions. <i>Computer Aided Chemical Engineering</i> , 2004 , 229-249	0.6	4
20	Solid deposition as a function of temperature in the nC10 + (nC24\(\text{BC25\text{BC26}}\)) system. Fluid Phase Equilibria, 2004 , 224, 237-244	2.5	33
19	Speed of Sound, Density, and Compressibility of Alkyl-Benzenes as a Function of Pressure and Temperature: Heptadecylbenzene and Octadecylbenzene. <i>Journal of Chemical & Data</i> , 2004 , 49, 983-987	2.8	2
18	Speed of Sound and Some Thermodynamic Properties of Liquid Methylcyclopentane and Butylcyclohexane in a Wide Range of Pressure. <i>International Journal of Thermophysics</i> , 2003 , 24, 639-64	9 ^{2.1}	5
17	Prediction of solid I Iquid equilibria in mixed electrolyte aqueous solution by the modified mean spherical approximation. <i>Fluid Phase Equilibria</i> , 2003 , 206, 205-214	2.5	9

LIST OF PUBLICATIONS

16	The pressure effect on the wax formation in diesel fuel?. Fuel, 2003, 82, 595-601	7.1	36
15	Evidence for the Aging of Wax Deposits in Crude Oils by Ostwald Ripening. <i>Petroleum Science and Technology</i> , 2003 , 21, 381-391	1.4	43
14	Measurement of the acoustic nonlinearity parameter in liquid alkanes under pressure and comparison with the Lee®Kesler correlation. <i>High Temperatures - High Pressures</i> , 2003 , 35/36, 109-116	1.3	5
13	Pressure Dependence of the Thermophysical Properties of n-Pentadecane and n-Heptadecane. <i>International Journal of Thermophysics</i> , 2002 , 23, 697-708	2.1	40
12	Speed of Sound, Density, and Compressibility of Alkylbenzenes as a Function of Pressure and Temperature: Tridecylbenzene and Pentadecylbenzene. <i>Journal of Chemical & Data</i> , 2002 , 47, 1532-1536	2.8	8
11	Speed of sound, density, and compressibilities of liquid eicosane and docosane at various temperatures and pressures. <i>High Temperatures - High Pressures</i> , 2001 , 33, 371-378	1.3	18
10	Measurement and prediction of temperature and pressure effect on wax content in a partially frozen paraffinic system. <i>Fluid Phase Equilibria</i> , 2001 , 187-188, 71-82	2.5	40
9	Low-Pressure Modeling of Wax Formation in Crude Oils. <i>Energy & Discourt Fuels</i> , 2001 , 15, 1454-1460	4.1	57
8	SolidDiquidDapor Phase Boundary of a North Sea Waxy Crude: Measurement and Modeling. <i>Energy & Description of the Energy & Energy & Description of the Energy & Descriptio</i>	4.1	57
7	Volumetric Behavior of Decane + Carbon Dioxide at High Pressures. Measurement and Calculation. Journal of Chemical & Engineering Data, 2001 , 46, 1136-1139	2.8	39
6	Prediction of solidfluid phase diagrams of light gasesfleavy paraffin systems up to 200 MPa using an equation of state©E model. <i>Fluid Phase Equilibria</i> , 2000 , 167, 145-159	2.5	61
5	Ultrasonic velocity of liquid tridecane and tetradecane as a function of temperature and pressure. <i>High Temperatures - High Pressures</i> , 2000 , 32, 83-87	1.3	18
4	Isentropic thermophysical properties of pure n-paraffins as a function of temperature and chain length. <i>High Temperatures - High Pressures</i> , 2000 , 32, 305-310	1.3	13
3	Measurement and calculation of solid-liquid and liquid-vapour equilibria in a ternary mixture. <i>High Temperatures - High Pressures</i> , 1997 , 29, 337-344	1.3	3
2	A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems. <i>Fluid Phase Equilibria</i> , 1992 , 74, 85-93	2.5	69
1	Phase Behavior Investigation of a Live Presalt Crude Oil from Short-Wave Infrared Observation, Acoustic Wave Sensing, and Equation of State Modeling. <i>Energy & Dels</i> ,	4.1	1