Dharmendra Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2644456/publications.pdf

Version: 2024-02-01

59	992	18	28
papers	citations	h-index	g-index
62	62	62	883
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pluripotent Stem Cells for Livestock Health and Production. Current Stem Cell Research and Therapy, 2022, 17, 252-266.	0.6	2
2	Applications of Genome Editing Tools in Stem Cells Towards Regenerative Medicine: An Update. Current Stem Cell Research and Therapy, 2022, 17, 267-279.	0.6	4
3	Effect of mitochondriaâ€ŧargeted antioxidant on the regulation of the mitochondrial function of sperm during cryopreservation. Andrologia, 2022, 54, e14431.	1.0	5
4	Double Sperm Cloning: Could Improve the Efficiency of Animal Cloning. , 2022, 2, 108-114.		1
5	Cryobanking of primary somatic cells of elite farm animals - A pilot study in domesticated water buffalo (Bubalus bubalis). Cryobiology, 2021, 98, 139-145.	0.3	8
6	Generation of Murine Induced Pluripotent Stem Cells through Transposon-Mediated Reprogramming. Methods in Molecular Biology, 2021, , 791-809.	0.4	2
7	Induced pluripotent stem cells from buffalo. , 2021, , 149-164.		1
8	Perspectives of pluripotent stem cells in livestock. World Journal of Stem Cells, 2021, 13, 1-29.	1.3	15
9	Is addition or removal of seminal plasma able to compensate for the dilution effect of buffalo semen?. Andrologia, 2021, 53, e14123.	1.0	5
10	Factors influencing seasonal anestrus in buffaloes and strategies to overcome the summer anestrus in buffaloes. Biological Rhythm Research, 2020, 51, 907-914.	0.4	4
11	Applications of genome editing in farm animals. , 2020, , 131-149.		5
12	Effect of Dickkopf-1 and colony stimulating factor-2 on the developmental competence, quality, gene expression and live birth rate of buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Theriogenology, 2020, 157, 254-262.	0.9	17
13	Escherichia coli membraneâ€derived oxygenâ€reducing enzyme system (Oxyrase) protects bubaline spermatozoa during cryopreservation. Molecular Reproduction and Development, 2020, 87, 1048-1058.	1.0	2
14	Semen parameters and fertility potency of a cloned water buffalo (Bubalus bubalis) bull produced from a semen-derived epithelial cell. PLoS ONE, 2020, 15, e0237766.	1.1	3
15	Lowâ€density lipoproteins protect sperm during cryopreservation in buffalo: Unraveling mechanism of action. Molecular Reproduction and Development, 2020, 87, 1231-1244.	1.0	6
16	â€~Semen dilution effect' on sperm variables and conception rate in buffalo. Animal Reproduction Science, 2020, 214, 106304.	0.5	16
17	Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World Journal of Stem Cells, 2020, 12, 527-544.	1.3	14
18	Application of Nanotechnology in Agricultural Farm Animals. , 2020, , 1-8.		0

#	Article	IF	CITATIONS
19	Successful cloning of a superior buffalo bull. Scientific Reports, 2019, 9, 11366.	1.6	22
20	Sodium alginate potentiates antioxidants, cryoprotection and antibacterial activities of egg yolk extender during semen cryopreservation in buffalo. Animal Reproduction Science, 2019, 209, 106166.	0.5	13
21	Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Research in Veterinary Science, 2019, 123, 252-260.	0.9	11
22	Isolation and culture of epithelial cells from stored buffalo semen and their use for the production of cloned embryos. Reproduction, Fertility and Development, 2019, 31, 1581.	0.1	2
23	Melatonin-improved buffalo semen quality during nonbreeding season under tropical condition. Domestic Animal Endocrinology, 2019, 68, 119-125.	0.8	20
24	A new role for RU486 (mifepristone): it protects sperm from premature capacitation during cryopreservation in buffalo. Scientific Reports, 2019, 9, 6712.	1.6	19
25	Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using Sleeping Beauty transposon. Tissue and Cell, 2018, 51, 49-55.	1.0	10
26	A novel combination of silane-coated silica colloid with hybrid RNA extraction protocol and RNA enrichment for downstream applications of spermatozoal RNA. Andrologia, 2018, 50, e13030.	1.0	8
27	Establishment of a Somatic Cell Bank for Indian Buffalo Breeds and Assessing the Suitability of the Cryopreserved Cells for Somatic Cell Nuclear Transfer. Cellular Reprogramming, 2018, 20, 157-163.	0.5	17
28	The cryoprotective effect of iodixanol in buffalo semen cryopreservation. Animal Reproduction Science, 2017, 179, 20-26.	0.5	21
29	Clinical potential of human-induced pluripotent stem cells. Cell Biology and Toxicology, 2017, 33, 99-112.	2.4	31
30	Cysteamine supplementation revealed detrimental effect on cryosurvival of buffalo sperm based on computer-assisted semen analysis and oxidative parameters. Animal Reproduction Science, 2017, 177, 56-64.	0.5	18
31	Estimation of endogenous levels of osteopontin, total antioxidant capacity and malondialdehyde in seminal plasma: Application for fertility assessment in buffalo (<i>Bubalus bubalis</i>) bulls. Reproduction in Domestic Animals, 2017, 52, 221-226.	0.6	20
32	Assessment of sperm damages during different stages of cryopreservation in water buffalo by fluorescent probes. Cytotechnology, 2016, 68, 451-458.	0.7	29
33	Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter. PLoS ONE, 2016, 11, e0157570.	1.1	13
34	Comparative assessment of development competence of zona-intact and zona-free cloned goat embryos produced by innovative micromanipulation tools. Livestock Science, 2016, 190, 43-47.	0.6	1
35	Quantification of leptin in seminal plasma of buffalo bulls and its correlation with antioxidant status, conventional and computer-assisted sperm analysis (CASA) semen variables. Animal Reproduction Science, 2016, 166, 122-127.	0.5	21
36	Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World Journal of Stem Cells, 2015, 7, 315.	1.3	40

#	Article	IF	CITATIONS
37	Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Animal Reproduction Science, 2015, 159, 38-45.	0.5	58
38	Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Animal Reproduction Science, 2015, 152, 26-31.	0.5	61
39	Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming, 2015, 17, 131-140.	0.5	70
40	Buffalo Embryonic, Fetal and Adult Stem Cells: Progress and Challenges. Agricultural Research, 2015, 4, 7-20.	0.9	1
41	Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 915-921.	0.7	12
42	Transposon-based reprogramming to induced pluripotency. Histology and Histopathology, 2015, 30, 1397-409.	0.5	15
43	Assessment of developmental potential of caprine cloned embryos with ooplasm replenishment under two culture media. In Vitro Cellular and Developmental Biology - Animal, 2014, , 1.	0.7	2
44	Developmental potency of pre-implant parthenogenetic goat embryos: effect of activation protocols and culture media. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 1-6.	0.7	13
45	Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons. Biochemical and Biophysical Research Communications, 2014, 450, 581-587.	1.0	39
46	Buffalo <i>(Bubalus bubalis)</i> ES Cell–Like Cells are Capable of <i>In Vitro</i> Skeletal Myogenic Differentiation. Reproduction in Domestic Animals, 2013, 48, 284-291.	0.6	8
47	Cultured buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 408-416.	0.7	12
48	Cryopreservation and Quality Assessment of Buffalo Bull Semen Collected from Farmer's Doorstep. Agricultural Research, 2013, 2, 148-152.	0.9	10
49	Culture, characterization and differentiation of cells from buffalo (Bubalus bubalis) amnion. Cytotechnology, 2013, 65, 23-30.	0.7	21
50	Seminal Plasma Proteome: Promising Biomarkers for Bull Fertility. Agricultural Research, 2012, 1, 78-86.	0.9	27
51	Buffalo (Bubalus bubalis) Fetal Skin Derived Fibroblast Cells Exhibit Characteristics of Stem Cells. Agricultural Research, 2012, 1, 175-182.	0.9	16
52	Buffalo (<i>Bubalus bubalis</i>) Embryonic Stem Cellâ€Like Cells and Preimplantation Embryos Exhibit Comparable Expression of Pluripotencyâ€Related Antigens. Reproduction in Domestic Animals, 2011, 46, 50-58.	0.6	38
53	Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Journal of Assisted Reproduction and Genetics, 2011, 28, 679-688.	1.2	16
54	Assessment of DNA Damage during <i>In Vitro</i> Development of Buffalo (<i>Bubalus bubalis</i> Embryos: Effect of Cysteamine. Reproduction in Domestic Animals, 2010, 45, 1118-1121.	0.6	7

#	Article	IF	CITATION
55	Effect of Sodium Nitroprusside, a Nitric Oxide Donor, and Aminoguanidine, a Nitric Oxide Synthase Inhibitor, on <i>In Vitro </i> Development of Buffalo (<i>Bubalus bubalis </i>) Embryos. Reproduction in Domestic Animals, 2009, 45, 931-3.	0.6	7
56	Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology, 2009, 71, 1215-1219.	0.9	47
57	Hand-Made Cloned Buffalo (<i>Bubalus bubalis</i>) Embryos: Comparison of Different Media and Culture Systems. Cloning and Stem Cells, 2008, 10, 435-442.	2.6	56
58	Cysteamine supplementation of in vitro maturation medium, in vitro culture medium or both media promotes in vitro development of buffalo (Bubalus bubalis) embryos. Reproduction, Fertility and Development, 2008, 20, 253.	0.1	27
59	Empowering of reproductive health of farm animals through genome editing technology. , 0, 2, 4.		2