
Augusto Pessina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2644420/publications.pdf Version: 2024-02-01

ALICUSTO PESSINA

#	Article	lF	CITATIONS
1	Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs- TRAIL) Increases Antitumor Efficacy of Their Secretome. Current Cancer Drug Targets, 2021, 21, 213-222.	1.6	9
2	Inhibition of Human Malignant Pleural Mesothelioma Growth by Mesenchymal Stromal Cells. Cells, 2021, 10, 1427.	4.1	9
3	Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice. Cancers, 2021, 13, 5505.	3.7	4
4	In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human Glioblastoma. Pharmaceutics, 2021, 13, 2101.	4.5	5
5	Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications. Pharmaceutics, 2020, 12, 411.	4.5	20
6	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	9.9	28
7	Paclitaxel-Loaded Silk Fibroin Nanoparticles: Method Validation by UHPLC-MS/MS to Assess an Exogenous Approach to Load Cytotoxic Drugs. Pharmaceutics, 2019, 11, 285.	4.5	15
8	Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth. Pharmaceutics, 2019, 11, 45.	4.5	9
9	Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells International, 2019, 2019, 1-13.	2.5	42
10	Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. Journal of Controlled Release, 2019, 302, 2-18.	9.9	26
11	In Vitro Anticancer Activity of Extracellular Vesicles (EVs) Secreted by Gingival Mesenchymal Stromal Cells Primed with Paclitaxel. Pharmaceutics, 2019, 11, 61.	4.5	44
12	Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. Biomedicine and Pharmacotherapy, 2018, 108, 111-118.	5.6	18
13	A Nonenzymatic and Automated Closed-Cycle Process for the Isolation of Mesenchymal Stromal Cells in Drug Delivery Applications. Stem Cells International, 2018, 2018, 1-10.	2.5	12
14	Intra-Articular Administration of Autologous Micro-Fragmented Adipose Tissue in Dogs with Spontaneous Osteoarthritis: Safety, Feasibility, and Clinical Outcomes. Stem Cells Translational Medicine, 2018, 7, 819-828.	3.3	32
15	Paclitaxelâ€releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematological Oncology, 2017, 35, 693-702.	1.7	39
16	Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells. Biomedicine and Pharmacotherapy, 2017, 87, 755-758.	5.6	36
17	Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: An in vitro study. Cytotherapy, 2017, 19, 721-734.	0.7	9
18	Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Research and Therapy, 2017, 8, 53.	5.5	57

AUGUSTO PESSINA

#	Article	IF	CITATIONS
19	Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Scientific Reports, 2017, 7, 9376.	3.3	60
20	Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. Journal of Controlled Release, 2017, 262, 104-117.	9.9	121
21	Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1578-1585.	1.7	23
22	Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel. Expert Opinion on Drug Delivery, 2016, 13, 789-798.	5.0	39
23	Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vascular Cell, 2016, 8, 3.	0.2	66
24	Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Research and Therapy, 2015, 6, 155.	5.5	60
25	Lab-on-Chip for testing myelotoxic effect of drugs and chemicals. Microfluidics and Nanofluidics, 2015, 19, 935-940.	2.2	7
26	Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy, 2015, 15, 495-504.	3.1	140
27	Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy, 2015, 17, 310-319.	0.7	13
28	Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Research and Therapy, 2015, 6, 194.	5.5	56
29	Gemcitabine-releasing mesenchymal stromal cells inhibit inÂvitro proliferation of human pancreatic carcinoma cells. Cytotherapy, 2015, 17, 1687-1695.	0.7	43
30	Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. Journal of Experimental and Clinical Cancer Research, 2015, 34, 82.	8.6	30
31	Ex Vivo Expanded Mesenchymal Stromal Cell Minimal Quality Requirements for Clinical Application. Stem Cells and Development, 2015, 24, 677-685.	2.1	79
32	Mesenchymal Stromal Cells Uptake and Release Paclitaxel without Reducing its Anticancer Activity. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 400-405.	1.7	7
33	Human mesenchymal stromal cells primed with paclitaxel, apart from displaying anti-tumor activity, maintain their immune regulatory functions in vitro. Cytotherapy, 2014, 16, 868-870.	0.7	5
34	Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. Journal of Controlled Release, 2014, 192, 262-270.	9.9	697
35	Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. Cytotherapy, 2014, 16, 181-190.	0.7	19
36	Mesenchymal stromal cells primed with <scp>P</scp> aclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemiaâ€bearing mice. British Journal of Haematology, 2013, 160, 766-778.	2.5	67

AUGUSTO PESSINA

#	Article	IF	CITATIONS
37	Mesenchymal Stem/Stromal Cells: A New ''Cells as Drugs'' Paradigm. Efficacy and Critical Aspects in Cell Therapy. Current Pharmaceutical Design, 2013, 19, 2459-2473.	1.9	144
38	Human skin-derived fibroblasts acquire in vitro anti-tumor potential after priming with Paclitaxel. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 523-30.	1.7	10
39	A mesenchymal stromal cell line resistant to paclitaxel that spontaneously differentiates into osteoblast-like cells. Cell Biology and Toxicology, 2011, 27, 169-180.	5.3	10
40	Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy. PLoS ONE, 2011, 6, e28321.	2.5	146
41	CD45+/CD133+positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. Cell Biology International, 2010, 34, 783-790.	3.0	5
42	Prevalidation of the Rat CFU-GM Assay for In Vitro Toxicology Applications. ATLA Alternatives To Laboratory Animals, 2010, 38, 105-117.	1.0	17
43	Refinement and Optimisation of the Rat CFU-GM Assay to Incorporate the Use of Cryopreserved Bone-marrow Cells for <i>In Vitro</i> Toxicology Applications. ATLA Alternatives To Laboratory Animals, 2009, 37, 417-425.	1.0	8
44	Microbiological Risk Assessment in Stem Cell Manipulation. Critical Reviews in Microbiology, 2008, 34, 1-12.	6.1	9
45	The key role of adult stem cells: therapeutic perspectives. Current Medical Research and Opinion, 2006, 22, 2287-2300.	1.9	66
46	Bcl-2 down modulation in WEHI-3B/CTRES cells resistant to Cholera Toxin (CT)-induced apoptosis. Cell Research, 2006, 16, 306-312.	12.0	8
47	Hematotoxicity Testing by Cell Clonogenic Assay in Drug Development and Preclinical Trials. Current Pharmaceutical Design, 2005, 11, 1055-1065.	1.9	59
48	A Methylcellulose Microculture Assay for the <i>In Vitro</i> Assessment of Drug Toxicity on Granulocyte/macrophage Progenitors (CFU-GM). ATLA Alternatives To Laboratory Animals, 2004, 32, 17-23.	1.0	9
49	Secretion of Basic Fibroblast Growth Factor (FGF-2) by WEHI-3B Myelomonocytic Leukemia Cells. Growth Factors, 2002, 20, 121-129.	1.7	0
50	<i>In Vitro</i> Tests for Haematotoxicity: Prediction of Drug-induced Myelosuppression by the CFU-GM Assay. ATLA Alternatives To Laboratory Animals, 2002, 30, 75-79.	1.0	18
51	Selection of a WEHI-3B leukemia cell subclone resistant to inhibition by cholera toxin. Molecular and Cellular Biochemistry, 2002, 233, 19-26.	3.1	2
52	Role of SR-4987 stromal cells in the modulation of Doxorubicin toxicity to in vitro granulocyte-macrophage progenitors (CFU-GM). Life Sciences, 1999, 65, 513-523.	4.3	27
53	Topoisomerase l inhibitors and drug resistance. , 1998, 27, 149-164.		12

54 The Granulocyte/Macrophage Colony-Forming Unit Assay. , 1998, , 217-230.

9

AUGUSTO PESSINA

#	Article	IF	CITATIONS
55	The Use of <i>In Vitro</i> Systems for Evaluating Haematotoxicity. ATLA Alternatives To Laboratory Animals, 1996, 24, 211-231.	1.0	50
56	Establishment and characterization of a new murine cell line (SR-4987) derived from marrow stromal cells. Cytotechnology, 1992, 8, 93-102.	1.6	20
57	Inhibition of murine leukemia (WEHI-3B and L1210) proliferation by cholera toxin B subunit. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 206-211.	4.1	11
58	Isolation of a colony-stimulating factor produced by L 1210 murine leukemia cells. Blut, 1987, 55, 499-504.	1.2	0
59	Modulation of EL-4 mouse lymphoma cell proliferation by macrophages and tumor related factors. Blut, 1984, 49, 45-51.	1.2	5