Zhenjiang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2644360/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface enrichment of ions leads to the stability of bulk nanobubbles. Soft Matter, 2020, 16, 5470-5477.	2.7	54
2	Evaluation of composite interfacial properties based on carbon fiber surface chemistry and topography: Nanometer-scale wetting analysis using molecular dynamics simulation. Composites Science and Technology, 2019, 171, 252-260.	7.8	48
3	Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study. Langmuir, 2017, 33, 8090-8096.	3.5	33
4	Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles. Langmuir, 2016, 32, 751-758.	3.5	25
5	Stability of Surface Nanobubbles without Contact Line Pinning. Langmuir, 2019, 35, 8482-8489.	3.5	19
6	How nanobubbles lose stability: Effects of surfactants. Applied Physics Letters, 2017, 111, .	3.3	18
7	Surface Nanobubbles Nucleate Liquid Boiling. Langmuir, 2018, 34, 14096-14101.	3.5	18
8	Contact Line Pinning Effects Influence Determination of the Line Tension of Droplets Adsorbed on Substrates. Journal of Physical Chemistry C, 2018, 122, 17184-17189.	3.1	15
9	What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation. European Physical Journal E, 2017, 40, 114.	1.6	13
10	The fate of bulk nanobubbles under gas dissolution. Physical Chemistry Chemical Physics, 2022, 24, 9685-9694.	2.8	10
11	Enhanced fluctuation for pinned surface nanobubbles. Physical Review E, 2019, 100, 052803.	2.1	7
12	Stability of micro-Cassie states on rough substrates. Journal of Chemical Physics, 2015, 142, 244704.	3.0	6
13	Hidden Nanobubbles in Undersaturated Liquids. Langmuir, 2016, 32, 11328-11334.	3.5	6
14	Constrained lattice density functional theory and its applications on vapor–liquid nucleations. Science Bulletin, 2015, 60, 320-327.	9.0	5
15	Curvature dependence of Henry's law constant and nonideality of gas equilibrium for curved vapor–liquid interfaces. AICHE Journal, 2019, 65, e16604.	3.6	3
16	Microdroplet targeting induced by substrate curvature. Chinese Physics B, 2018, 27, 096801.	1.4	0