Ann Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood, 2014, 123, 377-390.	0.6	555
2	A Central Role for Free Heme in the Pathogenesis of Severe Sepsis. Science Translational Medicine, 2010, 2, 51ra71.	5.8	412
3	Heme Oxygenase-1 Protein Localizes to the Nucleus and Activates Transcription Factors Important in Oxidative Stress. Journal of Biological Chemistry, 2007, 282, 20621-20633.	1.6	344
4	Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochemical Journal, 1988, 256, 861-865.	1.7	274
5	Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains. Nature Structural Biology, 1999, 6, 926-931.	9.7	219
6	Transcriptional Activation of the Heme Oxygenase Gene by Heme and Cadmium in Mouse Hepatoma Cells. Journal of Biological Chemistry, 1989, 264, 6371-6375.	1.6	210
7	Red Cells, Hemoglobin, Heme, Iron, and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1347-1353.	1.1	200
8	Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Frontiers in Physiology, 2015, 6, 187.	1.3	193
9	Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. Journal of Biological Chemistry, 1989, 264, 6371-5.	1.6	169
10	Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochemical Journal, 1979, 182, 47-54.	1.7	168
11	Hemopexin-mediated transport of heme into isolated rat hepatocytes Journal of Biological Chemistry, 1981, 256, 10902-10909.	1.6	117
12	Hemopexin-mediated transport of heme into isolated rat hepatocytes. Journal of Biological Chemistry, 1981, 256, 10902-9.	1.6	100
13	Role of Hemopexin in Protection of Low-Density Lipoprotein against Hemoglobin-Induced Oxidation. Biochemistry, 1996, 35, 13112-13117.	1.2	94
14	Cellular Protection Mechanisms against Extracellular Heme. Journal of Biological Chemistry, 1999, 274, 638-648.	1.6	91
15	Heme–Hemopexin Complex Attenuates Neuronal Cell Death and Stroke Damage. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 953-964.	2.4	81
16	Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. European Journal of Cell Biology, 1990, 53, 234-45.	1.6	79
17	Heme-hemopexin-mediated induction of metallothionein gene expression Journal of Biological Chemistry, 1992, 267, 16379-16384.	1.6	78
18	Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin Journal of Biological Chemistry, 1993, 268, 7365-7371.	1.6	78

ANN SMITH

#	Article	lF	CITATIONS
19	Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. Journal of Biological Chemistry, 1989, 264, 17637-17640.	1.6	76
20	Kinetics and Specificity of Feline Leukemia Virus Subgroup C Receptor (FLVCR) Export Function and Its Dependence on Hemopexin. Journal of Biological Chemistry, 2010, 285, 28874-28882.	1.6	74
21	Hepatic subcellular metabolism of heme from heme-hemopexin: Incorporation of iron into ferritin. Biochemical and Biophysical Research Communications, 1979, 91, 1504-1511.	1.0	73
22	Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. Journal of Biological Chemistry, 1993, 268, 7365-71.	1.6	70
23	Transport of heme by hemopexin to the liver: Evidence for receptor-mediated uptake. Biochemical and Biophysical Research Communications, 1978, 84, 151-157.	1.0	69
24	Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region Journal of Biological Chemistry, 1993, 268, 6256-6262.	1.6	67
25	Hemopexin in the human retina: Protection of the retina against heme-mediated toxicity. , 1996, 168, 71-80.		64
26	Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. Journal of Biological Chemistry, 1989, 264, 17637-40.	1.6	64
27	Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. Journal of Biological Chemistry, 1993, 268, 6256-62.	1.6	64
28	Heme-hemopexin-mediated induction of metallothionein gene expression. Journal of Biological Chemistry, 1992, 267, 16379-84.	1.6	63
29	Mechanism of Metallothionein Gene Regulation by Heme-Hemopexin. Journal of Biological Chemistry, 1995, 270, 23988-23995.	1.6	59
30	Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. Journal of Neurochemistry, 2013, 125, 89-101.	2.1	57
31	Expression of the haemopexin-transport system in cultured mouse hepatoma cells. Links between haemopexin and iron metabolism. Biochemical Journal, 1988, 256, 941-950.	1.7	55
32	Domain structure of rabbit hemopexin. Isolation and characterization of a heme-binding glycopeptide Journal of Biological Chemistry, 1984, 259, 12001-12006.	1.6	55
33	Evidence for the localization of haemopexin immunoreactivity in neurones in the human brain. Neuroscience Letters, 1993, 149, 141-144.	1.0	49
34	Expression of the Protective Proteins Hemopexin and Haptoglobin by Cells of the Neural Retina. Experimental Eye Research, 1998, 67, 83-93.	1.2	46
35	Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Molecular Medicine, 2016, 22, 437-451.	1.9	45
36	Heme-mediated reactive oxygen species toxicity to retinal pigment epithelial cells is reduced by hemopexin. , 1996, 168, 81-86.		40

ANN SMITH

#	Article	IF	CITATIONS
37	Domain structure of rabbit hemopexin. Isolation and characterization of a heme-binding glycopeptide. Journal of Biological Chemistry, 1984, 259, 12001-6.	1.6	40
38	Role for Copper in Transient Oxidation and Nuclear Translocation of MTF-1, but Not of NF-κB, by the Heme–Hemopexin Transport System. Antioxidants and Redox Signaling, 2000, 2, 739-752.	2.5	33
39	A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. Journal of Neurochemistry, 2016, 138, 479-494.	2.1	33
40	An alternative view of the proposed alternative activities of hemopexin. Protein Science, 2011, 20, 791-805.	3.1	31
41	Heme binding by hemopexin: evidence for multiple modes of binding and functional implications. The Protein Journal, 2000, 19, 239-248.	1.1	30
42	Role of Heme–Hemopexin in Human T-Lymphocyte Proliferation. Experimental Cell Research, 1997, 232, 246-254.	1.2	28
43	Use of hemopexin domains and monoclonal antibodies to hemopexin to probe the molecular determinants of hemopexin-mediated heme transport Journal of Biological Chemistry, 1988, 263, 8220-8225.	1.6	28
44	The murine haemopexin receptor. Evidence that the haemopexin-binding site resides on a 20 kDa subunit and that receptor recycling is regulated by protein kinase C. Biochemical Journal, 1991, 276, 417-425.	1.7	27
45	Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene ofEscherichia coli. The Protein Journal, 1996, 15, 575-583.	1.1	26
46	Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Frontiers in Physiology, 2018, 9, 1595.	1.3	26
47	Coordination of nitric oxide by heme-hemopexin. The Protein Journal, 1998, 17, 255-260.	1.1	24
48	Links Between Cell-Surface Events Involving Redox-Active Copper and Gene Regulation in the Hemopexin Heme Transport System. Antioxidants and Redox Signaling, 2000, 2, 157-175.	2.5	24
49	Use of hemopexin domains and monoclonal antibodies to hemopexin to probe the molecular determinants of hemopexin-mediated heme transport. Journal of Biological Chemistry, 1988, 263, 8220-5.	1.6	23
50	Cell-Surface Events for Metallothionein-1 and Heme Oxygenase-1 Regulation by the Hemopexin–Heme Transport System. Antioxidants and Redox Signaling, 2000, 2, 753-765.	2.5	19
51	Membrane Phospholipid Reorganization Differentially Regulates Metallothionein and Heme Oxygenase by Heme–Hemopexin. DNA and Cell Biology, 2002, 21, 355-364.	0.9	19
52	What Is Next in This "Age―of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals, 2019, 12, 144.	1.7	17
53	Effects of reduction and ligation of heme iron on the thermal stability of heme-hemopexin complexes. The Protein Journal, 2001, 20, 145-154.	1.1	14
54	An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake. BioMetals, 2008, 21, 239-248.	1.8	14

Ann Smith

#	Article	IF	CITATIONS
55	Growth inhibition of Bacteroides fragilis by hemopexin: proteolytic degradation of hemopexin to overcome heme limitation. FEMS Microbiology Letters, 2001, 199, 73-78.	0.7	13
56	Role for copper in the cellular and regulatory effects of heme-hemopexin. BioMetals, 2009, 22, 421-437.	1.8	13
57	Biliary excretion of exogenous hematin in rats. Life Sciences, 1977, 21, 1015-1020.	2.0	11
58	Interaction of heme and heme–hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1107-1117.	0.5	11
59	Identification of oxidative modifications of hemopexin and their predicted physiological relevance. Journal of Biological Chemistry, 2017, 292, 13658-13671.	1.6	11
60	Safe coordinated trafficking of heme and iron with copper maintain cell homeostasis: modules from the hemopexin system. BioMetals, 2019, 32, 355-367.	1.8	9
61	Purified and Recombinant Hemopexin: Protease Activity and Effect on Neutrophil Chemotaxis. Molecular Medicine, 2016, 22, 22-31.	1.9	7
62	Cleavage of Rabbit Hemopexin by Plasmin and Isolation of Two Glycopeptides. Protides of the Biological Fluids; Proceedings of the Colloquium, 1984, 31, 219-224.	0.1	6
63	Mechanisms of haem toxicity in haemolysis and protection by the haemâ€binding protein, haemopexin. ISBT Science Series, 2017, 12, 119-133.	1.1	5
64	Heme-Induced Oxidation of Cysteine Groups of Myofilament Proteins Leads to Contractile Dysfunction of Permeabilized Human Skeletal Muscle Fibres. International Journal of Molecular Sciences, 2020, 21, 8172.	1.8	5
65	Protection against Heme Toxicity: Hemopexin Rules, OK?. Handbook of Porphyrin Science, 2013, , 311-338.	0.3	3