Eva Harth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264418/publications.pdf Version: 2024-02-01

Ενλ Ηλρτμ

#	Article	IF	CITATIONS
1	Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin–Polyvinyl Block Copolymers. Angewandte Chemie, 2022, 134, e202112742.	1.6	10
2	Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin–Polyvinyl Block Copolymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
3	Oneâ€Forâ€All Polyolefin Functionalization: Active Ester as Gateway to Combine Insertion Polymerization with ROP, NMP, and RAFT. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
4	Klaus Müllen: Honoring the pioneer in nanographene chemistry. Journal of Polymer Science, 2022, 60, 1795-1796.	2.0	0
5	Distorted Sandwich aâ€Điimine Pd(II) Catalyst: Linear Polyethylene and Synthesis ofÂEthylene/Acrylate Elastomers. Angewandte Chemie, 2021, 133, 24309.	1.6	9
6	Distorted Sandwich αâ€Ðiimine Pd ^{II} Catalyst: Linear Polyethylene and Synthesis of Ethylene/Acrylate Elastomers. Angewandte Chemie - International Edition, 2021, 60, 24107-24115.	7.2	32
7	Formaldehyde-doxorubicin dual polymeric drug delivery system for higher efficacy and limited cardiotoxicity of anthracyclines. European Polymer Journal, 2021, 143, 110210.	2.6	4
8	Switching the Reactivity of Palladium Diimines with "Ancillary―Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angewandte Chemie - International Edition, 2021, 60, 1635-1640.	7.2	18
9	Switching the Reactivity of Palladium Diimines with "Ancillary―Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angewandte Chemie, 2021, 133, 1659-1664.	1.6	2
10	Analytical Insights into the Microstructures and Reaction Mechanisms of Cationic Pd(II) α-Diimine-Catalyzed Polyolefins. Macromolecules, 2021, 54, 10814-10829.	2.2	3
11	Branching Regulation in Olefin Polymerization via Lewis Acid Triggered Isomerization of Monomers. Angewandte Chemie - International Edition, 2020, 59, 4743-4749.	7.2	22
12	Branching Regulation in Olefin Polymerization via Lewis Acid Triggered Isomerization of Monomers. Angewandte Chemie, 2020, 132, 4773-4779.	1.6	6
13	Polyolefin Analyses with a 10 mm Multinuclear NMR Cryoprobe. Analytical Chemistry, 2020, 92, 15596-15603.	3.2	7
14	Dual Polymerization Pathway for Polyolefin-Polar Block Copolymer Synthesis via MILRad: Mechanism and Scope. Journal of the American Chemical Society, 2020, 142, 21469-21483.	6.6	43
15	Enzyme assisted peptide self-assemblies trigger cell adhesion in high density oxime based host gels. Journal of Materials Chemistry B, 2020, 8, 4419-4427.	2.9	15
16	Collagen-Targeted Theranostic Nanosponges for Delivery of the Matrix Metalloproteinase 14 Inhibitor Naphthofluorescein. Chemistry of Materials, 2020, 32, 3707-3714.	3.2	11
17	Metal–organic insertion light initiated radical (MILRad) polymerization: photo-initiated radical polymerization of vinyl polar monomers with various palladium diimine catalysts. Polymer Chemistry, 2019, 10, 3040-3047.	1.9	23
18	Enzyme-assisted self-assembly within a hydrogel induced by peptide diffusion. Chemical Communications, 2019, 55, 1156-1159.	2.2	29

Eva Harth

#	Article	IF	CITATIONS
19	Nanonetwork photogrowth expansion: Tailoring nanoparticle networks' chemical structure and local topology. Polymer Chemistry, 2019, 10, 3841-3850.	1.9	8
20	Olefine und polare Vinylmonomere: Überbrückung der Lücke für Materialien der nähsten Generation. Angewandte Chemie, 2019, 131, 12498-12520.	1.6	41
21	Olefins and Vinyl Polar Monomers: Bridging the Gap for Next Generation Materials. Angewandte Chemie - International Edition, 2019, 58, 12370-12391.	7.2	170
22	Electron beam lithography of poly(glycidol) nanogels for immobilization of a three-enzyme cascade. Polymer Chemistry, 2018, 9, 637-645.	1.9	13
23	Poly(glycidol) Coating on Ultrahigh Molecular Weight Polyethylene for Reduced Biofilm Growth. ACS Applied Materials & Interfaces, 2018, 10, 4050-4056.	4.0	16
24	Second-Generation Nanosponges: Nanonetworks in Controlled Dimensions via Backbone Ketoxime and Alkoxyamine Cross-Links for Controlled Release. Macromolecules, 2018, 51, 10160-10166.	2.2	5
25	Light as a Catalytic Switch for Block Copolymer Architectures: Metal–Organic Insertion/Light Initiated Radical (MILRad) Polymerization. Macromolecules, 2018, 51, 7224-7232.	2.2	44
26	Photocontrolled Growth of Cross-Linked Nanonetworks. ACS Macro Letters, 2018, 7, 745-750.	2.3	30
27	Nanosponge Tunability in Size and Crosslinking Density. Journal of Visualized Experiments, 2017, , .	0.2	1
28	Pioneering Investigators 2017. Polymer Chemistry, 2017, 8, 4904-4915.	1.9	0
29	One-pot polyglycidol nanogels via liposome master templates for dual drug delivery. Journal of Controlled Release, 2016, 244, 366-374.	4.8	25
30	Postâ€polymerization modification of branched polyglycidol with <i>N</i> â€Hydroxy phthalimide to give ratioâ€controlled aminoâ€oxy functionalized species. Journal of Polymer Science Part A, 2016, 54, 2820-2825.	2.5	8
31	Precise Microscale Polymeric Networks through Piezoelectronic Inkjet Printing. ACS Biomaterials Science and Engineering, 2016, 2, 1265-1272.	2.6	12
32	Matrices for combined delivery of proteins and synthetic molecules. Advanced Drug Delivery Reviews, 2016, 98, 77-85.	6.6	31
33	Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Translational Vision Science and Technology, 2015, 4, 1.	1.1	27
34	Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges. Journal of Controlled Release, 2015, 220, 751-757.	4.8	52
35	Semibranched polyglycidols as "fillers―in polycarbonate hydrogels to tune hydrophobic drug release. Polymer Chemistry, 2015, 6, 1096-1102.	1.9	16
36	Trans-meningeal drug delivery to optic nerve ganglion cell axons using a nanoparticle drug delivery system. Experimental Eye Research, 2014, 118, 42-45.	1.2	3

Eva Harth

#	Article	IF	CITATIONS
37	Sequential Targeted Delivery of Paclitaxel and Camptothecin Using a Cross-Linked "Nanosponge― Network for Lung Cancer Chemotherapy. Molecular Pharmaceutics, 2014, 11, 265-275.	2.3	60
38	An assessment of nanosponges for intravenous and oral drug delivery of BCS class IV drugs: Drug delivery kinetics and solubilization. Polymer Chemistry, 2014, 5, 3551.	1.9	17
39	Controlled branching of polyglycidol and formation of protein–glycidol bioconjugates via a graft-from approach with "PEG-like―arms. Chemical Communications, 2013, 49, 2394.	2.2	38
40	Practical polymerization of functionalized lactones and carbonates with Sn(OTf)2 in metal catalysed ring-opening polymerization methods. Polymer Chemistry, 2013, 4, 2470.	1.9	16
41	Water-Soluble Semiconducting Nanoparticles for Imaging. ACS Macro Letters, 2013, 2, 710-714.	2.3	24
42	Nanosponge Formation from Organocatalytically Synthesized Poly(carbonate) Copolymers. ACS Macro Letters, 2012, 1, 915-918.	2.3	56
43	High relaxivity MRI imaging reagents from bimodal star polymers. Polymer Chemistry, 2012, 3, 390-398.	1.9	44
44	Non-viral siRNA delivery vectors: dendritic molecular transporter and molecular transporter nanovectors for target gene silencing. Polymer Chemistry, 2011, 2, 441-446.	1.9	12
45	Linear release nanoparticle devices for advanced targeted cancer therapies with increased efficacy. Polymer Chemistry, 2010, 1, 93.	1.9	28
46	"Click―Reactions: Novel Chemistries for Forming Well-defined Polyester Nanoparticles. Macromolecules, 2010, 43, 5665-5671.	2.2	46
47	Targeted Nanoparticles That Deliver a Sustained, Specific Release of Paclitaxel to Irradiated Tumors. Cancer Research, 2010, 70, 4550-4559.	0.4	136
48	Tailored polyester nanoparticles: post-modification with dendritic transporter and targeting units via reductive amination and thiol-ene chemistry. Soft Matter, 2009, 5, 1417.	1.2	48
49	Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions. Journal of the American Chemical Society, 2008, 130, 8706-8713.	6.6	78
50	Synthesis of Star Polymer Architectures with Site-Isolated Chromophore Cores. Macromolecules, 2008, 41, 3472-3480.	2.2	40
51	Effective Drug Therapies from Functional, Macromolecular Building Blocks with a Biomimetic Design. Macromolecular Symposia, 2007, 255, 20-23.	0.4	3
52	New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical Reviews, 2001, 101, 3661-3688.	23.0	3,724
53	Accurate Structural Control and Block Formation in the Living Polymerization of 1,3-Dienes by Nitroxide-Mediated Procedures. Macromolecules, 2000, 33, 363-370.	2.2	206
54	Oneâ€Forâ€All Polyolefin Functionalization: Active Ester as Gateway to Combine Insertion Polymerization with ROP, NMP, and RAFT. Angewandte Chemie, 0, , .	1.6	0