Sneh Lata Singla-Pareek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2644134/publications.pdf

Version: 2024-02-01

64668 53660 7,442 152 45 79 citations h-index g-index papers 161 161 161 6233 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 2016, 7, 1029.	1.7	611
2	Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 2005, 337, 61-67.	1.0	388
3	Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma, 2010, 245, 85-96.	1.0	242
4	Transgenic Tobacco Overexpressing Glyoxalase Pathway Enzymes Grow and Set Viable Seeds in Zinc-Spiked Soils. Plant Physiology, 2006, 140, 613-623.	2.3	237
5	Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Letters, 2005, 579, 6265-6271.	1.3	221
6	Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Journal of Experimental Botany, 2020, 71, 470-479.	2.4	184
7	Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 2008, 17, 171-180.	1.3	168
8	Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Functional and Integrative Genomics, 2011, 11, 293-305.	1.4	146
9	Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L Functional and Integrative Genomics, 2009, 9, 109-123.	1.4	140
10	An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 2011, 7, 49.	1.9	136
11	Whole-Genome Analysis of Oryza sativa Reveals Similar Architecture of Two-Component Signaling Machinery with Arabidopsis. Plant Physiology, 2006, 142, 380-397.	2.3	130
12	Knockdown of an inflorescence meristemâ€specific cytokinin oxidase – OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell and Environment, 2018, 41, 936-946.	2.8	122
13	Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. Journal of Plant Physiology, 2009, 166, 507-520.	1.6	120
14	Glyoxalase and Methylglyoxal as Biomarkers for Plant Stress Tolerance. Critical Reviews in Plant Sciences, 2014, 33, 429-456.	2.7	120
15	Cyclophilins: Proteins in search of function. Plant Signaling and Behavior, 2013, 8, e22734.	1.2	113
16	A unique <scp>N</scp> i ² ⁺ Ââ€dependent and methylglyoxalâ€inducible rice glyoxalaseÂ <scp>I</scp> possesses a single active site and functions in abiotic stress response. Plant Journal, 2014, 78, 951-963.	2.8	113
17	Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 2007, 32, 621-628.	0.5	109
18	Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10, 200.	1.2	105

#	Article	IF	Citations
19	A glutathione responsive rice glyoxalase <scp>II</scp> , Os <scp>GLYII</scp> â€2, functions in salinity adaptation by maintaining better photosynthesis efficiency and antiâ€oxidant pool. Plant Journal, 2014, 80, 93-105.	2.8	102
20	Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports, 2016, 6, 18358.	1.6	100
21	Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 2014, 42, 485-490.	1.6	97
22	Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell and Environment, 2018, 41, 1186-1200.	2.8	95
23	AN OVERVIEW ON THE ROLE OF METHYLGLYOXAL AND GLYOXALASES IN PLANTS. Drug Metabolism and Drug Interactions, 2008, 23, 51-68.	0.3	94
24	Overexpression of Rice CBS Domain Containing Protein Improves Salinity, Oxidative, and Heavy Metal Tolerance in Transgenic Tobacco. Molecular Biotechnology, 2012, 52, 205-216.	1.3	90
25	Histidine kinases in plants. Plant Signaling and Behavior, 2012, 7, 1230-1237.	1.2	87
26	Understanding salinity responses and adopting â€~omics-based' approaches to generate salinity tolerant cultivars of rice. Frontiers in Plant Science, 2015, 6, 712.	1.7	86
27	Abiotic Stresses Cause Differential Regulation of Alternative Splice Forms of GATA Transcription Factor in Rice. Frontiers in Plant Science, 2017, 8, 1944.	1.7	86
28	Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 2007, 19, 137-151.	1.0	85
29	Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. Journal of Experimental Botany, 2020, 71, 653-668.	2.4	82
30	Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants, 2008, 14, 39-49.	1.4	81
31	Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Reports, 2016, 35, 27-41.	2.8	72
32	A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Functional and Integrative Genomics, 2013, 13, 351-365.	1.4	71
33	Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science, 2015, 2, .	1.5	71
34	A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015, 176, 36-46.	1.6	70
35	Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015, 6, 682.	1.7	68
36	Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiologia Plantarum, 2021, 171, 653-676.	2.6	68

#	Article	IF	Citations
37	Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Current Genomics, 2016, 17, 343-357.	0.7	66
38	Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signaling and Behavior, 2012, 7, 1337-1345.	1.2	56
39	Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Frontiers in Microbiology, 2020, 11, 509919.	1.5	55
40	Heterologous Expression of a Salinity and Developmentally Regulated Rice Cyclophilin Gene (OsCyp2) in E. coli and S. cerevisiae Confers Tolerance Towards Multiple Abiotic Stresses. Molecular Biotechnology, 2009, 42, 195-204.	1.3	53
41	Methylglyoxal detoxification in plants: Role of glyoxalase pathway. Indian Journal of Plant Physiology, 2016, 21, 377-390.	0.8	52
42	Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant, Cell and Environment, 2018, 41, 947-969.	2.8	51
43	Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiology and Biochemistry, 2021, 163, 15-25.	2.8	51
44	Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Functional and Integrative Genomics, 2009, 9, 411-417.	1.4	50
45	A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice, 2019, 12, 58.	1.7	50
46	Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports, 2018, 8, 4072.	1.6	49
47	Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Scientific Reports, 2013, 3, 3076.	1.6	48
48	Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Molecular Biology, 2012, 79, 555-568.	2.0	47
49	Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice, 2012, 5, 37.	1.7	45
50	De Novo Assembly and Characterization of Stress Transcriptome in a Salinity-Tolerant Variety CS52 of Brassica juncea. PLoS ONE, 2015, 10, e0126783.	1.1	45
51	Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biology, 2015, 15, 42.	1.6	44
52	A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation. Plant Physiology, 2016, 171, 2854-2868.	2.3	44
53	Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, 2018, 293, 5035-5043.	1.6	43
54	Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Frontiers in Plant Science, 2015, 6, 711.	1.7	42

#	Article	IF	CITATIONS
55	Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice, 2015, 8, 54.	1.7	41
56	Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Functional and Integrative Genomics, 2015, 15, 395-412.	1.4	41
57	Mapping the â€~Two-component system' network in rice. Scientific Reports, 2017, 7, 9287.	1.6	41
58	Raising salinity tolerant rice: recent progress and future perspectives. Physiology and Molecular Biology of Plants, 2008, 14, 137-154.	1.4	40
59	Characterization and Functional Validation of Tobacco PLC Delta for Abiotic Stress Tolerance. Plant Molecular Biology Reporter, 2012, 30, 488-497.	1.0	39
60	Integrating the dynamics of yield traits in rice in response to environmental changes. Journal of Experimental Botany, 2020, 71, 490-506.	2.4	39
61	Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 2021, 22, 9826.	1.8	39
62	Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum, 2022, 174, e13651.	2.6	39
63	Metabolic Engineering of Glyoxalase Pathway for Enhancing Stress Tolerance in Plants. Methods in Molecular Biology, 2010, 639, 95-118.	0.4	37
64	The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of Experimental Botany, 2020, 71, 684-698.	2.4	37
65	Mapping the †early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Rice, 2019, 12, 3.	1.7	37
66	The quest for osmosensors in plants. Journal of Experimental Botany, 2020, 71, 595-607.	2.4	37
67	Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. International Journal of Molecular Sciences, 2021, 22, 6119.	1.8	37
68	A nuclearâ€localized rice glyoxalase I enzyme, OsGLYIâ€8, functions in the detoxification of methylglyoxal in the nucleus. Plant Journal, 2017, 89, 565-576.	2.8	36
69	Characterization and functional validation of glyoxalase II from rice. Protein Expression and Purification, 2007, 51, 126-132.	0.6	35
70	Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Scientific Reports, 2016, 6, 34762.	1.6	35
71	Reassessing plant glyoxalases: large family and expanding functions. New Phytologist, 2020, 227, 714-721.	3.5	35
72	Gaining Acceptance of Novel Plant Breeding Technologies. Trends in Plant Science, 2021, 26, 575-587.	4.3	34

#	Article	IF	Citations
73	Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiologia Plantarum, 2014, 152, 1-16.	2.6	33
74	MATH-Domain Family Shows Response toward Abiotic Stress in Arabidopsis and Rice. Frontiers in Plant Science, 2016, 7, 923.	1.7	33
7 5	Metabolic shift in sugars and amino acids regulates sprouting in Saffron corm. Scientific Reports, 2017, 7, 11904.	1.6	32
76	How doÂrice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. Photosynthesis Research, 2021, 150, 117-135.	1.6	32
77	Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Functional and Integrative Genomics, 2017, 17, 69-83.	1.4	31
78	Salt Overly Sensitive pathway members are influenced by diurnal rhythm in rice. Plant Signaling and Behavior, 2013, 8, e24738.	1.2	28
79	Forward and reverse genetics approaches for combined stress tolerance in rice. Indian Journal of Plant Physiology, 2018, 23, 630-646.	0.8	27
80	CO2 uptake and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. Photosynthesis Research, 2019, 142, 211-227.	1.6	27
81	Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum, 2021, 172, 1352-1362.	2.6	27
82	Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. International Journal of Molecular Sciences, 2021, 22, 11034.	1.8	26
83	Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. International Journal of Molecular Sciences, 2017, 18, 250.	1.8	25
84	From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics, 2020, 21, 145.	1.2	24
85	Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 2021, 184, 104367.	2.0	24
86	Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry, 2021, 166, 593-604.	2.8	24
87	The chloride channels: Silently serving the plants. Physiologia Plantarum, 2021, 171, 688-702.	2.6	23
88	Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. Molecular Plant, 2022, 15, 45-64.	3.9	23
89	Unraveling the contribution of <scp><i>OsSOS2</i></scp> in conferring salinity and drought tolerance in a highâ€yielding rice. Physiologia Plantarum, 2022, 174, e13638.	2.6	23
90	Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2). Molecular Biology Reports, 2015, 42, 1139-1148.	1.0	22

#	Article	IF	Citations
91	OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast. Frontiers in Plant Science, 2016, 7, 62.	1.7	22
92	<i>DPS1</i> regulates cuticle development and leaf senescence in rice. Food and Energy Security, 2021, 10, e273.	2.0	20
93	Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiology and Biochemistry, 2011, 49, 996-1004.	2.8	17
94	A Salt Overly Sensitive Pathway Member from Brassica juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Current Genomics, 2017, 19, 60-69.	0.7	17
95	Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology, 2016, 21, 545-555.	0.8	16
96	Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods in Molecular Biology, 2017, 1679, 83-95.	0.4	16
97	Maintenance of stress related transcripts in tolerant cultivar at a level higher than sensitive one appears to be a conserved salinity response among plants. Plant Signaling and Behavior, 2009, 4, 431-434.	1.2	15
98	Plant Metallothioneins., 2016,, 239-261.		15
99	Enhanced salinity tolerance and improved yield properties in Bangladeshi rice Binnatoa through Agrobacterium-mediated transformation of PgNHX1 from Pennisetum glaucum. Acta Physiologiae Plantarum, 2010, 32, 657-663.	1.0	14
100	Putative osmosensor $\hat{a} \in \text{``OsHK3b} \hat{a} \in ``a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from < i > Arabidopsis < /i > . Journal of Biomolecular Structure and Dynamics, 2014, 32, 1318-1332.$	2.0	14
101	Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches., 2015,, 3-40.		13
102	Designing Climate-Smart Future Crops Employing Signal Transduction Components., 2015,, 393-413.		13
103	The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Current Genomics, 2021, 22, 59-74.	0.7	13
104	Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants., 2015,, 347-366.		12
105	Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice. , 2018, , .		12
106	Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. International Journal of Molecular Sciences, 2022, 23, 1687.	1.8	12
107	Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress. Physiology and Molecular Biology of Plants, 2022, 28, 899-910.	1.4	12
108	OsCBSCBSPB4 is a Two Cystathionine-Î ² -Synthase Domain-containing Protein from Rice that Functions in Abiotic Stress Tolerance. Current Genomics, 2017, 19, 50-59.	0.7	11

#	Article	IF	Citations
109	What signals the glyoxalase pathway in plants?. Physiology and Molecular Biology of Plants, 2021, 27, 2407-2420.	1.4	11
110	Tracing the Evolution of Plant Glyoxalase III Enzymes for Structural and Functional Divergence. Antioxidants, 2021, 10, 648.	2.2	10
111	Dissecting Out the Crosstalk Between Salinity and Hormones in Roots of <i>Arabidopsis</i> Journal of Integrative Biology, 2011, 15, 913-924.	1.0	9
112	Mapping the microRNA Expression Profiles in Glyoxalase Overexpressing Salinity Tolerant Rice. Current Genomics, 2017, 19, 21-35.	0.7	9
113	Biodiesel production from camelina oil: Present status and future perspectives. Food and Energy Security, 2023, 12, e340.	2.0	9
114	Biomass production and salinity response in plants: role of MicroRNAs. Indian Journal of Plant Physiology, 2017, 22, 448-457.	0.8	8
115	Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants. , 2019, , 29-47.		8
116	Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 2021, 22, 450-467.	0.7	7
117	Transgenic Plants for Dry and Saline Environments. , 2007, , 501-530.		6
118	Signaling cross talk between biotic and abiotic stress responses in soybean., 2016,, 27-52.		6
119	Sensing and signalling in plant stress responses: ensuring sustainable food security in an era of climate change. New Phytologist, 2020, 228, 823-827.	3.5	6
120	Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. Plant Cell Reports, 2021, 40, 2037-2046.	2.8	6
121	How to survive in a salty desert: An adventure study with Suaeda fruticosa. The Journal of Plant Science Research, 2019, 35, 257-261.	0.1	6
122	Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 2022, 11 , .	2.0	6
123	<i><scp>OsCyp2â€P</scp></i> , an auxinâ€responsive cyclophilin, regulates Ca ²⁺ calmodulin interaction for an ionâ€mediated stress response in rice. Physiologia Plantarum, 2022, 174, e13631.	2.6	6
124	Seedlingâ€stage salinity tolerance in rice: Decoding the role of transcription factors. Physiologia Plantarum, 2022, 174, e13685.	2.6	6
125	Glyoxalase <scp>III</scp> enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Physiologia Plantarum, 2022, 174, e13693.	2.6	6
126	TUNEL Assay to Assess Extent of DNA Fragmentation and Programmed Cell Death in Root Cells under Various Stress Conditions. Bio-protocol, 2017, 7, e2502.	0.2	5

#	Article	IF	CITATIONS
127	Glyoxalase Pathway and Drought Stress Tolerance in Plants. , 2016, , 379-399.		4
128	Expression dynamics of glyoxalase genes under high temperature stress in plants. Plant Physiology Reports, 2020, 25, 533-548.	0.7	4
129	Innovative plant breeding could deliver crop revolution. Nature, 2020, 577, 622-622.	13.7	4
130	Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environmental Microbiology, 2022, 24, 2817-2836.	1.8	4
131	The Two-Component System: Transducing Environmental and Hormonal Signals. , 2019, , 247-278.		4
132	<scp>DTH8</scp> overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv <scp>IR64</scp> . Physiologia Plantarum, 2022, 174, e13691.	2.6	4
133	Analysis of Salt Stress-Related Transcriptome Fingerprints from Diverse Plant Species. , 2007, , 267-287.		3
134	Transgenic Approaches. , 2009, , 417-450.		3
135	Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants. Sustainable Development and Biodiversity, 2019, , 1-24.	1.4	3
136	Molecular Chaperones: Key Players of Abiotic Stress Response in Plants. Sustainable Development and Biodiversity, 2019, , 125-165.	1.4	3
137	Recent Advancements in Developing Salinity Tolerant Rice. , 2019, , 87-112.		3
138	Draft Genome Sequence of a Potential Plant Growth-Promoting Rhizobacterium, <i>Pseudomonas</i> sp. Strain CK-NBRI-02. Microbiology Resource Announcements, 2019, 8, .	0.3	3
139	Methylglyoxal-glyoxalase system as a possible selection module for raising marker-safe plants in rice. Physiology and Molecular Biology of Plants, 2021, 27, 2579-2588.	1.4	3
140	Glutathione Homeostasis: Crucial for Abiotic Stress Tolerance in Plants., 2009,, 263-282.		2
141	Investigating Abiotic Stress Response Machinery in Plants: The Metabolomic Approach. , 2016, , 303-319.		2
142	Draft Genome Sequence of Bacillus marisflavi CK-NBRI-03, Isolated from Agricultural Soil. Microbiology Resource Announcements, 2020, 9, .	0.3	2
143	Perception of Stress Environment in Plants. , 2019, , 163-186.		2
144	Agrobacterium-mediated Transformation and Constitutive Expression of PgNHX1 from Pennisetum glaucum L. in Oryza sativa L. cv. Binnatoa. Plant Tissue Culture and Biotechnology, 2010, 19, 25-33.	0.1	2

#	Article	IF	CITATIONS
145	High lysine and high proteinâ€containing salinityâ€tolerant rice grains (<i>Oryza sativa cv</i> IR64). Food and Energy Security, 2022, 11, .	2.0	2
146	Stress response of <i>OsETHE1 </i> i>is altered in response to light and dark conditions. Plant Signaling and Behavior, 2014, 9, e973820.	1.2	1
147	Analyses of Old "Prokaryotic―Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa. Frontiers in Plant Science, 2016, 7, 304.	1.7	1
148	Genetic Improvement of Rice for Food and Nutritional Security., 2021,, 13-32.		1
149	Plant histidine kinases: Targets for crop improvement. , 2020, , 101-109.		О
150	Survival Strategies in Halophytes: Adaptation and Regulation. , 2021, , 1591-1612.		0
151	Survival Strategies in Halophytes: Adaptation and Regulation. , 2020, , 1-22.		О
152	Role of the glyoxalase pathway in delaying plant senescence under stress conditions. SEB Experimental Biology Series, 2009, 62, 171-85.	0.1	0