Peter A H M Bakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26438/publications.pdf

Version: 2024-02-01

57 papers 15,467 citations

41 h-index 56 g-index

59 all docs

59 docs citations

59 times ranked

11775 citing authors

#	Article	IF	CITATIONS
1	First Report of <i>Soybean mosaic virus</i> in Commercially Grown Soybean in the Netherlands. Plant Disease, 2022, 106, 775.	1.4	1
2	The soilâ€borne ultimatum, microbial biotechnology and sustainable agriculture. Microbial Biotechnology, 2022, 15, 84-87.	4.2	7
3	The secret life of plantâ€beneficial rhizosphere bacteria: insects as alternative hosts. Environmental Microbiology, 2022, 24, 3273-3289.	3.8	19
4	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
5	Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms, 2021, 9, 575.	3.6	12
6	Rapid evolution of trait correlation networks during bacterial adaptation to the rhizosphere. Evolution; International Journal of Organic Evolution, 2021, 75, 1218-1229.	2.3	5
7	Rapid evolution of bacterial mutualism in the plant rhizosphere. Nature Communications, 2021, 12, 3829.	12.8	51
8	Experimental-Evolution-Driven Identification of <i>Arabidopsis</i> Rhizosphere Competence Genes in Pseudomonas protegens. MBio, 2021, 12, e0092721.	4.1	19
9	Soil-Borne Legacies of Disease in Arabidopsis thaliana. Methods in Molecular Biology, 2021, 2232, 209-218.	0.9	3
10	Collection of Sterile Root Exudates from Foliar Pathogen-Inoculated Plants. Methods in Molecular Biology, 2021, 2232, 305-317.	0.9	3
11	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	8.3	80
12	Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Frontiers in Microbiology, 2019, 10, 1631.	3 . 5	36
13	Beneficial microbes going underground of root immunity. Plant, Cell and Environment, 2019, 42, 2860-2870.	5.7	133
14	Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.	3.9	112
15	Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 2019, 154, 31-42.	1.7	31
16	The Soil-Borne Legacy. Cell, 2018, 172, 1178-1180.	28.9	366
17	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	7.1	608
18	Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12, 1496-1507.	9.8	603

#	Article	IF	CITATIONS
19	A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Frontiers in Nutrition, 2018, 5, 80.	3.7	95
20	Iron and Immunity. Annual Review of Phytopathology, 2017, 55, 355-375.	7.8	183
21	Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10, 265-268.	9.8	294
22	Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 2016, 90, 623-634.	3.9	140
23	Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology, 2015, 103, 925-934.	4.0	90
24	Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 2015, 06, 266.	3.5	55
25	Microbial Control of Root-Pathogenic Fungi and Oomycetes. , 2015, , 165-173.		9
26	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	2.8	184
27	Rhizobacterial salicylate production provokes headaches!. Plant and Soil, 2014, 382, 1-16.	3.7	53
28	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	7.8	2,193
29	Absence of induced resistance in Agaricus bisporus against Lecanicillium fungicola. Antonie Van Leeuwenhoek, 2013, 103, 539-550.	1.7	7
30	The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 2013, 4, 165.	3.6	372
31	Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Journal, 2013, 29, 136-143.	1.7	106
32	The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17, 478-486.	8.8	3,741
33	Ironâ€regulated metabolites produced by P seudomonas fluorescens WCS 374r are not required for eliciting induced systemic resistance against P seudomonas syringae pv. tomato in A rabidopsis. MicrobiologyOpen, 2012, 1, 311-325.	3.0	38
34	Induced Systemic Resistance in <i>Arabidopsis thaliana</i> Against <i>Pseudomonas syringae</i> pv. <i>tomato</i> by 2,4-Diacetylphloroglucinol-Producing <i>Pseudomonas fluorescens</i> Phytopathology, 2012, 102, 403-412.	2.2	190
35	Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 2012, 32, 227-243.	5.3	543
36	Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 2011, 332, 1097-1100.	12.6	2,135

#	Article	IF	Citations
37	Effects of Jasmonic Acid, Ethylene, and Salicylic Acid Signaling on the Rhizosphere Bacterial Community of <i>Arabidopsis thaliana</i> Molecular Plant-Microbe Interactions, 2011, 24, 395-407.	2.6	114
38	Diversity, Virulence, and 2,4-Diacetylphloroglucinol Sensitivity of <i>Gaeumannomyces graminis</i> var. <i>tritici</i> Isolates from Washington State. Phytopathology, 2009, 99, 472-479.	2.2	50
39	<i>Pseudomonas fluorescens</i> WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response. Plant Physiology, 2008, 148, 1996-2012.	4.8	257
40	Early Responses of Tobacco Suspension Cells to Rhizobacterial Elicitors of Induced Systemic Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 1609-1621.	2.6	125
41	Induced Systemic Resistance by Fluorescent Pseudomonas spp Phytopathology, 2007, 97, 239-243.	2.2	472
42	Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek, 2007, 92, 367-389.	1.7	261
43	Competition for Iron and Induced Systemic Resistance by Siderophores of Plant Growth Promoting Rhizobacteria., 2007,, 121-133.		52
44	Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiology Ecology, 2005, 53, 245-253.	2.7	47
45	Determinants ofPseudomonas putidaWCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 2005, 6, 177-185.	4.2	307
46	Control of Fusarium Wilt of Radish by Combining Pseudomonas putida Strains that have Different Disease-Suppressive Mechanisms. Phytopathology, 2003, 93, 626-632.	2.2	172
47	Ethylene-Insensitive Tobacco Shows Differentially Altered Susceptibility to Different Pathogens. Phytopathology, 2003, 93, 813-821.	2.2	74
48	Ethylene Insensitivity Impairs Resistance to Soilborne Pathogens in Tobacco and Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2002, 15, 1078-1085.	2.6	50
49	Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek, 2002, 81, 617-624.	1.7	53
50	Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 2001, 183, 1909-1920.	2.2	161
51	Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat. Applied and Environmental Microbiology, 2001, 67, 3371-3378.	3.1	116
52	Microbial Antagonism at the Root Level Is Involved in the Suppression of Fusarium Wilt by the Combination of Nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology, 1999, 89, 1073-1079.	2.2	133
53	Utilization of heterologous siderophores and rhizosphere competence of fluorescent <i>Pseudomonas</i> Spp Canadian Journal of Microbiology, 1995, 41, 126-135.	1.7	179
54	Suppression of fusarium wilt of carnation by <i>Pseudomonas putida</i> WCS358 at different levels of disease incidence and iron availability. Biocontrol Science and Technology, 1994, 4, 279-288.	1.3	63

#	Article	IF	CITATIONS
55	Ferric pseudobactin 358 as an iron source for carnation. Journal of Plant Nutrition, 1994, 17, 2069-2078.	1.9	30
56	Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. European Journal of Plant Pathology, 1993, 99, 277-289.	0.5	107
57	Plant-Beneficial <i>Pseudomonas</i> Spp. Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. SSRN Electronic Journal, 0, , .	0.4	5