John M Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2643705/publications.pdf

Version: 2024-02-01

49 papers

3,820 citations

186209
28
h-index

233338 45 g-index

49 all docs 49 docs citations

49 times ranked 4861 citing authors

#	Article	IF	CITATIONS
1	The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 2012, 13, 693-712.	3.1	1,255
2	Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany, 2008, 89, 220-236.	0.8	582
3	Large-scale dieback of mangroves in Australia. Marine and Freshwater Research, 2017, 68, 1816.	0.7	226
4	Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of Environment, 2019, 222, 133-143.	4.6	188
5	Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96, 38-46.	4.9	155
6	Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuarine, Coastal and Shelf Science, 2005, 62, 377-384.	0.9	106
7	Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sensing of Environment, 2018, 210, 508-518.	4.6	101
8	Mapping Disturbances in a Mangrove Forest Using Multi-Date Landsat TM Imagery. Environmental Management, 2001, 27, 763-776.	1.2	85
9	Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquatic Botany, 2004, 80, 13-22.	0.8	72
10	Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environmental Monitoring and Assessment, 2009, 157, 137-149.	1.3	67
11	Relationship between Hyperspectral Measurements and Mangrove Leaf Nitrogen Concentrations. Remote Sensing, 2013, 5, 891-908.	1.8	60
12	Applications of Low Altitude Remote Sensing in Agriculture upon Farmers' Requests– A Case Study in Northeastern Ontario, Canada. PLoS ONE, 2014, 9, e112894.	1.1	60
13	Mapping spatial variability of crop growth conditions using RapidEye data in Northern Ontario, Canada. Remote Sensing of Environment, 2015, 168, 113-125.	4.6	52
14	Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data. Remote Sensing, 2014, 6, 2343-2371.	1.8	45
15	Assessing mangrove use at the local scale. Landscape and Urban Planning, 1999, 43, 201-208.	3.4	44
16	Detection of Crop Seeding and Harvest through Analysis of Time-Series Sentinel-1 Interferometric SAR Data. Remote Sensing, 2020, 12, 1551.	1.8	42
17	Perceptions of environmental change in a tropical coastal wetland. Land Degradation and Development, 2000, 11, 209-220.	1.8	41
18	Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific. Remote Sensing, 2014, 6, 11673-11688.	1.8	41

#	Article	IF	CITATIONS
19	Separating Crop Species in Northeastern Ontario Using Hyperspectral Data. Remote Sensing, 2014, 6, 925-945.	1.8	39
20	Extrapolating canopy phenology information using Sentinel-2 data and the Google Earth Engine platform to identify the optimal dates for remotely sensed image acquisition of semiarid mangroves. Journal of Environmental Management, 2021, 279, 111617.	3.8	38
21	Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada. Remote Sensing, 2014, 6, 2372-2392.	1.8	37
22	Seasonal changes in leaf chlorophyll a content and morphology in a sub-tropical mangrove forest of the Mexican Pacific. Marine Ecology - Progress Series, 2012, 444, 57-68.	0.9	37
23	The influence of seasonality in estimating mangrove leaf chlorophyll-a content from hyperspectral data. Wetlands Ecology and Management, 2013, 21, 193-207.	0.7	36
24	An Assessment of Mangroves in Guinea, West Africa, Using a Field and Remote Sensing Based Approach. Wetlands, 2010, 30, 773-782.	0.7	35
25	An object-oriented classification method for mapping mangroves in Guinea, West Africa, using multipolarized ALOS PALSAR L-band data. International Journal of Remote Sensing, 2013, 34, 563-586.	1.3	34
26	Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82, 102-111.	4.9	33
27	Visual analytics and remote sensing imagery to support community-based research for precision agriculture in emerging areas. Computers and Electronics in Agriculture, 2017, 143, 149-164.	3.7	32
28	The Use of Multipolarized Spaceborne SAR Backscatter for Monitoring the Health of a Degraded Mangrove Forest. Journal of Coastal Research, 2008, 241, 248-254.	0.1	29
29	Examining Local Ecological Knowledge of Hurricane Impacts in a Mangrove Forest Using an Analytical Hierarchy Process (AHP) Approach. Journal of Coastal Research, 2004, 203, 792-800.	0.1	28
30	Spectral response to varying levels of leaf pigments collected from a degraded mangrove forest. Journal of Applied Remote Sensing, 2012, 6, 063501.	0.6	27
31	Evaluation of the CSMâ€CROPGROâ€Canola Model for Simulating Canola Growth and Yield at West Nipissing in Eastern Canada. Agronomy Journal, 2016, 108, 575-584.	0.9	24
32	A field based statistical approach for validating a remotely sensed mangrove forest classification scheme. Wetlands Ecology and Management, 2011, 19, 409-421.	0.7	22
33	Examining the Influence of Seasonality, Condition, and Species Composition on Mangrove Leaf Pigment Contents and Laboratory Based Spectroscopy Data. Remote Sensing, 2016, 8, 226.	1.8	22
34	Assessing the Options to Improve Regional Wheat Yield in Eastern Canada Using the CSM–CERES–Wheat Model. Agronomy Journal, 2017, 109, 510-523.	0.9	17
35	Assessing fine beam RADARSAT-1 backscatter from a white mangrove (Laguncularia racemosa) Tj ETQq1 1 0.78-	4314.rgBT 0.7	/Oyerlock 10
36	Assessing relationships between Radarsat-2 C-band and structural parameters of a degraded mangrove forest. International Journal of Remote Sensing, 2013, 34, 7002-7019.	1.3	16

#	Article	IF	CITATIONS
37	Using RapidEye imagery to identify within-field variability of crop growth and yield in Ontario, Canada. Precision Agriculture, 2019, 20, 1231-1250.	3.1	15
38	Modeling tidal hydrodynamic changes induced by the opening of an artificial inlet within a subtropical mangrove dominated estuary. Wetlands Ecology and Management, 2020, 28, 103-118.	0.7	12
39	Assessing the Utility of a Portable Pocket Instrument for Estimating Seasonal Mangrove Leaf Chlorophyll Contents. Bulletin of Marine Science, 2013, 89, 621-633.	0.4	11
40	Identifying seasonal spatial patterns of crime in a small northern city. Crime Science, 2021, 10, .	1.4	8
41	Changes in the Hydrological Regime of Coastal Lagoons Affect Mangroves and Small Scale Fisheries: The Case of the Mangrove-Estuarine Complex of Marismas Nacionales (Pacific Coast of Mexico). Estuaries of the World, 2014, , 81-91.	0.1	7
42	On-farm spatial characterization of soil mineral nitrogen, crop growth, and yield of canola as affected by different rates of nitrogen application. Canadian Journal of Soil Science, 0, , .	0.5	5
43	Assessing dynamics micro-regions in the Great Islands of the Gulf of California based on MODIS aqua imagery products., 2007,,.		4
44	Tracking crop phenological development of spring wheat using synthetic aperture radar (SAR) in northern Ontario, Canada. , 2013 , , .		4
45	Adoption of Web-Based Spatial Tools by Agricultural Producers: Conversations with Seven Northeastern Ontario Farmers Using the GeoVisage Decision Support System. Agriculture (Switzerland), 2017, 7, 69.	1.4	4
46	Discrimination of 3 dominant mangrove species from the Pacific coast of Mexico by spectroscopy on intact leaves. Ciencias Marinas, 2018, 44, 185-202.	0.4	3
47	Erratum to "Ethnobiology, socio-economics and management of mangrove forests: A review―[Aquat. Bot. 89 (2008) 220–236]. Aquatic Botany, 2009, 90, 273.	0.8	2
48	A spatial perspective for predicting enrollment in a regional pharmacy school. Geo Journal, 2007, 70, 133-143.	1.7	1
49	The use of unmanned aerial systems (UASs) in precision agriculture. Burleigh Dodds Series in Agricultural Science, 2018, , 107-128.	0.1	O