Christopher W Bielawski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2643607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39, 228-240.	18.7	9,923
2	Living ring-opening metathesis polymerization. Progress in Polymer Science, 2007, 32, 1-29.	11.8	1,298
3	Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 2014, 43, 5288.	18.7	709
4	Ionic Liquid Crystals: Versatile Materials. Chemical Reviews, 2016, 116, 4643-4807.	23.0	617
5	An "Endless" Route to Cyclic Polymers. Science, 2002, 297, 2041-2044.	6.0	583
6	Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 2011, 21, 3443-3447.	6.7	383
7	Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2011, 2, 1233.	3.7	358
8	Perspectives on poly(dopamine). Chemical Science, 2013, 4, 3796.	3.7	338
9	An <i>N</i> , <i>N</i> ′-Diamidocarbene: Studies in Câ^'H Insertion, Reversible Carbonylation, and Transition-Metal Coordination Chemistry. Journal of the American Chemical Society, 2009, 131, 16039-16041.	6.6	288
10	Switchable Polymerization Catalysts. Chemical Reviews, 2016, 116, 1969-1992.	23.0	281
11	N-Heterocyclic Carbeneâ^'Transition Metal Complexes:  Spectroscopic and Crystallographic Analyses of Ï€-Back-bonding Interactions. Organometallics, 2007, 26, 6042-6049.	1.1	270
12	Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie - International Edition, 2010, 49, 6813-6816.	7.2	269
13	Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic and Biomolecular Chemistry, 2011, 9, 7292.	1.5	224
14	Quinone-Annulated N-Heterocyclic Carbeneâ^'Transition-Metal Complexes:Â Observation of Ï€-Backbonding Using FT-IR Spectroscopy and Cyclic Voltammetry. Journal of the American Chemical Society, 2006, 128, 16514-16515.	6.6	208
15	Synthesis of Cyclic Polybutadiene via Ring-Opening Metathesis Polymerization:Â The Importance of Removing Trace Linear Contaminants. Journal of the American Chemical Society, 2003, 125, 8424-8425.	6.6	197
16	Graphite Oxide as an Autoâ€Tandem Oxidation–Hydration–Aldol Coupling Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 528-532.	2.1	184
17	Illuminating Photoswitchable Catalysis. ACS Catalysis, 2013, 3, 1874-1885.	5.5	184
18	Ammonia N–H activation by a N,N′-diamidocarbene. Chemical Communications, 2010, 46, 4288.	2.2	168

#	Article	IF	CITATIONS
19	Photoswitchable Organocatalysis: Using Light To Modulate the Catalytic Activities of N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2012, 134, 12693-12699.	6.6	164
20	Diaminocarbene[3]ferrocenophanes and Their Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2008, 47, 2267-2270.	7.2	146
21	Selective surface functionalization at regions of high local curvature in graphene. Chemical Communications, 2013, 49, 677-679.	2.2	135
22	Polymer mechanochemistry: the design and study of mechanophores. Polymer International, 2013, 62, 2-12.	1.6	135
23	Arrested Catalysis: Controlling Kumada Coupling Activity via a Redox-Active N-Heterocyclic Carbene. Journal of the American Chemical Society, 2010, 132, 9420-9429.	6.6	130
24	A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods. ChemCatChem, 2012, 4, 1844-1849.	1.8	129
25	Synthesis and Study of Bidentate Benzimidazolylideneâ^'Group 10 Metal Complexes and Related Main-Chain Organometallic Polymers. Organometallics, 2006, 25, 6087-6098.	1.1	126
26	A Ring-Opening Metathesis Polymerization (ROMP) Approach to Carboxyl- and Amino-Terminated Telechelic Poly(butadiene)s. Macromolecules, 2000, 33, 6621-6623.	2.2	125
27	Redox-Active N-Heterocyclic Carbenes: Design, Synthesis, and Evaluation of Their Electronic Properties. Organometallics, 2009, 28, 6695-6706.	1.1	124
28	Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 2011, 44, 7659-7667.	2.2	124
29	A Seven-Membered <i>N,N</i> ′-Diamidocarbene. Organometallics, 2010, 29, 4569-4578.	1.1	117
30	Photoswitchable NHC-promoted ring-opening polymerizations. Chemical Communications, 2013, 49, 5453.	2.2	117
31	<i>N</i> , <i>N</i> ′-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity. Accounts of Chemical Research, 2016, 49, 1458-1468.	7.6	109
32	N-Heterocyclic carbenes: deducing σ- and π-contributions in Rh-catalyzed hydroboration and Pd-catalyzed coupling reactions. Tetrahedron, 2008, 64, 6853-6862.	1.0	106
33	Synthesis of Poly(3-alkylthiophene)- <i>block</i> -poly(arylisocyanide): Two Sequential, Mechanistically Distinct Polymerizations Using a Single Catalyst. Journal of the American Chemical Society, 2010, 132, 14000-14001.	6.6	103
34	Tuning the Electronic Properties of Carbenes: A Systematic Comparison of Neighboring Amino versus Amido Groups. Organometallics, 2012, 31, 3373-3378.	1.1	102
35	Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polymer Chemistry, 2012, 3, 757.	1.9	101
36	Diamidocarbenes as versatile and reversible [2Â+Â1] cycloaddition reagents. Nature Chemistry, 2012, 4, 275-280.	6.6	99

#	Article	IF	CITATIONS
37	Increasing the Initiation Efficiency of Ruthenium-Based Ring-Opening Metathesis Initiators:Â Effect of Excess Phosphine. Macromolecules, 2001, 34, 8838-8840.	2.2	98
38	Controlled Catalyst Transfer Polycondensation and Surface-Initiated Polymerization of a <i>p</i> -Phenyleneethynylene-Based Monomer. Journal of the American Chemical Society, 2013, 135, 4984-4987.	6.6	98
39	The enhanced photothermal effect of graphene/conjugated polymer composites: photoinduced energy transfer and applications in photocontrolled switches. Chemical Communications, 2014, 50, 14345-14348.	2.2	93
40	Redoxâ€Switchable Ringâ€Closing Metathesis: Catalyst Design, Synthesis, and Study. Chemistry - A European Journal, 2013, 19, 10866-10875.	1.7	90
41	<i>N,N</i> ′-Diamidoketenimines via Coupling of Isocyanides to an N-Heterocyclic Carbene. Journal of Organic Chemistry, 2010, 75, 2763-2766.	1.7	88
42	Photoswitchable Nâ€Heterocyclic Carbenes: Using Light to Modulate Electronâ€Donating Properties. Angewandte Chemie - International Edition, 2011, 50, 10322-10326.	7.2	87
43	Photoswitchable Metal-Mediated Catalysis: Remotely Tuned Alkene and Alkyne Hydroborations. Organometallics, 2013, 32, 3121-3128.	1.1	87
44	Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes. Dalton Transactions, 2013, 42, 13251.	1.6	81
45	A Photoswitchable Olefin Metathesis Catalyst. Organometallics, 2017, 36, 490-497.	1.1	69
46	Graphite Oxide as an Olefin Polymerization Carbocatalyst: Applications in Electrochemical Double Layer Capacitors. Advanced Functional Materials, 2012, 22, 3247-3253.	7.8	68
47	Real-Time, in Situ Monitoring of the Oxidation of Graphite: Lessons Learned. Chemistry of Materials, 2017, 29, 2150-2156.	3.2	68
48	Novel Gold(I)– and Gold(III)–N-Heterocyclic Carbene Complexes: Synthesis and Evaluation of Their Anticancer Properties. Organometallics, 2014, 33, 2544-2548.	1.1	67
49	Oxidation of poly(enetetramine)s: a new strategy for the synthesis of conjugated polyelectrolytes. Chemical Communications, 2009, , 2124.	2.2	66
50	Olefin Metathesis Catalysts Containing <i>N,N′</i> -Diamidocarbenes. Organometallics, 2011, 30, 2278-2284.	1.1	66
51	Effect of Adsorbed Amphiphilic Copolymers on the Interfacial Activity of Superparamagnetic Nanoclusters and the Emulsification of Oil in Water. Macromolecules, 2012, 45, 5157-5166.	2.2	66
52	Alkyne and Reversible Nitrile Activation: <i>N</i> , <i>N</i> ′-Diamidocarbene-Facilitated Synthesis of Cyclopropenes, Cyclopropenones, and Azirines. Journal of the American Chemical Society, 2012, 134, 6116-6119.	6.6	66
53	Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy. ACS Applied Materials & Interfaces, 2017, 9, 26392-26399.	4.0	66
54	Elucidation of Carbene Ambiphilicity Leading to the Discovery of Reversible Ammonia Activation. Journal of the American Chemical Society, 2013, 135, 18798-18801.	6.6	65

#	Article	IF	CITATIONS
55	Rapid thermal decomposition of confined graphene oxide films in air. Carbon, 2016, 101, 71-76.	5.4	65
56	Olefin Metathesis Catalysts Containing Acyclic Diaminocarbenes. Organometallics, 2010, 29, 250-256.	1.1	61
57	Controlled Chain-Growth Kumada Catalyst Transfer Polycondensation of a Conjugated Alternating Copolymer. Macromolecules, 2012, 45, 2321-2326.	2.2	60
58	Tunable Functionalization of Graphene Oxide Sheets through Surface-Initiated Cationic Polymerization. Macromolecules, 2015, 48, 994-1001.	2.2	60
59	Advances in bis(<i>N</i> â€heterocyclic carbene) chemistry: new classes of structurally dynamic materials. Journal of Physical Organic Chemistry, 2012, 25, 531-543.	0.9	59
60	Structurally Dynamic Materials Based on Bis(N-heterocyclic carbene)s and Bis(isothiocyanate)s: Toward Reversible, Conjugated Polymers. Macromolecules, 2010, 43, 3591-3593.	2.2	58
61	OberflÄ e henmodifizierung von Wasseraufbereitungsmembranen. Angewandte Chemie, 2017, 129, 4734-4788.	1.6	58
62	Synthesis and Study of 5,5′-Bibenzimidazolylidenes and Their Bimetallic Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 1729-1738.	1.0	56
63	Reductive generation of stable, five-membered N,N′-diamidocarbenes. Chemical Communications, 2014, 50, 4551.	2.2	56
64	Metal-promoted C1 polymerizations. Coordination Chemistry Reviews, 2018, 374, 261-278.	9.5	56
65	Synthesis and Study of the First N-Aryl Acyclic Diaminocarbene and Its Transition-Metal Complexes. Organometallics, 2007, 26, 5774-5777.	1.1	55
66	Polythiophene–block–poly(γ-benzyl L-glutamate): synthesis and study of a new rod–rod block copolymer. Polymer Chemistry, 2011, 2, 300-302.	1.9	53
67	Tuning the Surface Properties of Graphene Oxide by Surface-Initiated Polymerization of Epoxides: An Efficient Method for Enhancing Gas Separation. ACS Applied Materials & Interfaces, 2017, 9, 4998-5005.	4.0	53
68	Redox- and light-switchable N-heterocyclic carbenes: a "soup-to-nuts―course on contemporary structure–activity relationships. Chemical Communications, 2019, 55, 4451-4466.	2.2	53
69	Differentially Substituted Acyclic Diaminocarbene Ligands Display Conformation-Dependent Donicities. Organometallics, 2010, 29, 3047-3053.	1.1	51
70	A Conjugated Porous Polymer Complexed with a Single-Atom Cobalt Catalyst as An Electrocatalytic Sulfur Host for Enhancing Cathode Reaction Kinetics. Energy Storage Materials, 2021, 41, 14-23.	9.5	51
71	Covalent Confinement of Sulfur Copolymers onto Graphene Sheets Affords Ultrastable Lithium–Sulfur Batteries with Fast Cathode Kinetics. ACS Applied Materials & Interfaces, 2019, 11, 13234-13243.	4.0	50
72	An insight into non-emissive excited states in conjugated polymers. Nature Communications, 2015, 6, 8246.	5.8	48

#	Article	IF	CITATIONS
73	Impact of Ionic Liquids on the Exfoliation of Graphite Oxide. Journal of Physical Chemistry C, 2012, 116, 7867-7873.	1.5	46
74	An Isolable, Photoswitchable Nâ€Heterocyclic Carbene: Onâ€Demand Reversible Ammonia Activation. Angewandte Chemie - International Edition, 2015, 54, 11559-11563.	7.2	45
75	Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polymer Chemistry, 2013, 4, 3916.	1.9	44
76	N-heterocyclic carbene supported Au(<scp>i</scp>) and Au(<scp>iii</scp>) complexes: a comparison of cytotoxicities. New Journal of Chemistry, 2014, 38, 1218-1224.	1.4	43
77	Synthesis of conjugated diblock copolymers: two mechanistically distinct, sequential living polymerizations using a single catalyst. Polymer Chemistry, 2012, 3, 874.	1.9	42
78	A dual-fluorescent composite of graphene oxide and poly(3-hexylthiophene) enables the ratiometric detection of amines. Chemical Science, 2014, 5, 3130.	3.7	42
79	Singleâ€Atom Catalyst Aggregates: Sizeâ€Matching is Critical to Electrocatalytic Performance in Sulfur Cathodes. Advanced Science, 2022, 9, e2103773.	5.6	40
80	Ice-Templated Large-Scale Preparation of Two-Dimensional Sheets of Conjugated Polymers: Thickness-Independent Flexible Supercapacitance. ACS Nano, 2021, 15, 8870-8882.	7.3	39
81	N-Heterocyclic Carbenes:  Versatile Reagents for Postpolymerization Modification. Macromolecules, 2006, 39, 8895-8897.	2.2	38
82	<i>N</i> , <i>N</i> ′â€Diamidocarbenes Facilitate Selective CH Insertions and Transfer Hydrogenations. Chemistry - A European Journal, 2013, 19, 14773-14776.	1.7	38
83	Controlled Synthesis of an Alternating Donor–Acceptor Conjugated Polymer via Kumada Catalyst-Transfer Polycondensation. ACS Macro Letters, 2015, 4, 1254-1258.	2.3	37
84	A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent. Chemical Communications, 2016, 52, 5447-5450.	2.2	37
85	lonic liquids via efficient, solvent-free anion metathesis. Green Chemistry, 2007, 9, 1158.	4.6	36
86	A benzocrown-6-calix[4]arene methacrylate copolymer: Selective extraction of caesium ions from a multi-component system. Chemical Science, 2010, 1, 716.	3.7	34
87	Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation. ACS Nano, 2016, 10, 5189-5198.	7.3	34
88	Remote control grubbs catalysts that modulate ringâ€opening metathesis polymerizations. Journal of Polymer Science Part A, 2017, 55, 2949-2960.	2.5	34
89	Direct azidation of isotactic polypropylene and synthesis of â€~grafted to' derivatives thereof using azide–alkyne cycloaddition chemistry. Polymer International, 2017, 66, 70-76.	1.6	32
90	Atom Transfer Radical Polymerization in the Solidâ€State. Angewandte Chemie - International Edition, 2020. 59. 13929-13935.	7.2	32

#	Article	IF	CITATIONS
91	Structurally Dynamic Conjugated Polymers. Macromolecules, 2010, 43, 6923-6935.	2.2	31
92	Low Adsorption of Magnetite Nanoparticles with Uniform Polyelectrolyte Coatings in Concentrated Brine on Model Silica and Sandstone. Industrial & Engineering Chemistry Research, 2016, 55, 1522-1532.	1.8	31
93	Core–Shell Structured Polyamide 66 Nanofibers with Enhanced Flame Retardancy. ACS Omega, 2017, 2, 2665-2671.	1.6	31
94	Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 2015, 5, 8702.	1.6	30
95	1,6â€Enyne Cyclizations Catalyzed by Nâ€Heterocyclic Carbene Supported Gold Complexes: Deconvoluting Sterics and Electronics. European Journal of Organic Chemistry, 2014, 2014, 493-497.	1.2	29
96	Birch-Type Hydrogenation of Few-Layer Graphenes: Products and Mechanistic Implications. Journal of the American Chemical Society, 2016, 138, 14980-14986.	6.6	27
97	Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene. Journal of the American Chemical Society, 2017, 139, 4202-4210.	6.6	27
98	A Ringâ€Opening Metathesis Polymerization Catalyst That Exhibits Redoxâ€Switchable Monomer Selectivities. Chemistry - A European Journal, 2017, 23, 5994-6000.	1.7	27
99	Exploring the nucleophilicity of <i>N</i> , <i>N</i> ′â€diamidocarbenes: Heteroallenes and related compounds as coupling reagents. Journal of Physical Organic Chemistry, 2012, 25, 1027-1032.	0.9	26
100	Dihaloimidazolidinediones as Versatile Halodehydrating Agents. Chemistry - A European Journal, 2014, 20, 13487-13490.	1.7	25
101	Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium–sulfur batteries. Chemical Engineering Journal, 2022, 446, 137365.	6.6	25
102	Coaxially grafting conjugated microporous polymers containing single-atom cobalt catalysts to carbon nanotubes enhances sulfur cathode reaction kinetics. Chemical Engineering Journal, 2022, 444, 136546.	6.6	24
103	Epitaxial ALD BeO: Efficient Oxygen Diffusion Barrier for EOT Scaling and Reliability Improvement. IEEE Transactions on Electron Devices, 2011, 58, 4384-4392.	1.6	23
104	Cyclic (Aryl)(Amido)Carbenes: NHCs with Tripletâ€like Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16320-16325.	7.2	23
105	Covalent bonding of sulfur nanoparticles to unzipped multiwalled carbon nanotubes for high-performance lithium–sulfur batteries. Nanotechnology, 2019, 30, 024001.	1.3	22
106	Oligothiophene Nanoparticles: Photophysical and Electrogenerated Chemiluminescence Studies. Journal of Physical Chemistry Letters, 2012, 3, 2035-2038.	2.1	21
107	Cytotoxicity of silver(<scp>i</scp>), gold(<scp>i</scp>) and gold(<scp>iii</scp>) complexes of a pyridine wingtip substituted annelated N-heterocyclic carbene. RSC Advances, 2014, 4, 60776-60784.	1.7	21
108	Dynamic 2D manganese(ii) isonicotinate framework with reversible crystal-to-amorphous transformation and selective guest adsorption. CrystEngComm, 2014, 16, 4959.	1.3	21

#	Article	IF	CITATIONS
109	Synthesis and cytotoxic characteristics displayed by a series of Ag(<scp>i</scp>)-, Au(<scp>i</scp>)- and Au(<scp>iii</scp>)-complexes supported by a common N-heterocyclic carbene. New Journal of Chemistry, 2018, 42, 13948-13956.	1.4	20
110	Graphite oxide activated zeolite NaY: applications in alcohol dehydration. Catalysis Science and Technology, 2013, 3, 135-139.	2.1	19
111	Synthesis of a Donor–Acceptor Diblock Copolymer via Two Mechanistically Distinct, Sequential Polymerizations Using a Single Catalyst. Macromolecular Rapid Communications, 2014, 35, 204-209.	2.0	19
112	Burgess Reagent Facilitated Alcohol Oxidations in DMSO. Journal of Organic Chemistry, 2017, 82, 1046-1052.	1.7	19
113	SYNTHESIS, STUDY, AND APPLICATIONS OF POLYMERIC N-HETEROCYCLIC CARBENES. Comments on Inorganic Chemistry, 2010, 31, 75-82.	3.0	18
114	A redox-switchable ring-closing metathesis catalyst. Inorganic Chemistry Frontiers, 2017, 4, 1525-1532.	3.0	18
115	Asphaltene oxide promotes a broad range of synthetic transformations. Communications Chemistry, 2019, 2, .	2.0	18
116	Anisotropic, Organic Ionic Plastic Crystal Mesophases from Persubstituted Imidazolium Pentacyanocyclopentadienide Salts. Chemistry of Materials, 2019, 31, 9593-9603.	3.2	18
117	Metal-centered oxidations facilitate the removal of ruthenium-based olefin metathesis catalysts. Journal of Organometallic Chemistry, 2013, 745-746, 201-205.	0.8	17
118	Unveiling a Masked Polymer of Dewar Benzene Reveals <i>trans</i> -Poly(acetylene). Macromolecules, 2019, 52, 2923-2931.	2.2	17
119	Synthesis of Degradable Poly[(Ethylene Glycol)― <i>co</i> â€(Glycolic Acid)] via the Postâ€Polymerization Oxyfunctionalization of Poly(Ethylene Glycol). Macromolecular Rapid Communications, 2016, 37, 1587-1592.	2.0	16
120	Ascertaining the Carbon Hybridization States of Synthetic Polymers with X-ray Induced Auger Electron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 11855-11861.	1.5	16
121	Computational Investigations of the Effects of <i>N-</i> Heterocyclic Carbene Ligands on the Mechanism, Reactivity, and Regioselectivity of Rh-Catalyzed Hydroborations. ACS Catalysis, 2020, 10, 3820-3827.	5.5	16
122	Ionic Dithioester-Based RAFT Agents Derived from N-Heterocyclic Carbenes. Macromolecules, 2008, 41, 3775-3778.	2.2	15
123	Isoelectronic Pt(<scp>ii</scp>)– and Au(<scp>iii</scp>)–N-heterocyclic carbene complexes: a structural and biological comparison. New Journal of Chemistry, 2018, 42, 10704-10711.	1.4	15
124	Assessing the reactivity of the <i>N</i> , <i>N′</i> â€diamidocarbenes toward compounds containing early pâ€block elements. Journal of Physical Organic Chemistry, 2015, 28, 75-78.	0.9	14
125	Atomic-Layer Deposition of Single-Crystalline BeO Epitaxially Grown on GaN Substrates. ACS Applied Materials & Interfaces, 2017, 9, 41973-41979.	4.0	14
126	Growth and Characterization of BeO Thin Films Grown by Atomic Layer Deposition Using H ₂ O and O ₃ as Oxygen Sources. Journal of Physical Chemistry C, 2017, 121, 17498-17504.	1.5	13

#	Article	IF	CITATIONS
127	Dewar lactone as a modular platform to a new class of substituted poly(acetylene)s. Polymer Chemistry, 2019, 10, 6401-6412.	1.9	13
128	Regulating Lithium Plating and Stripping by Using Vertically Aligned Graphene/CNT Channels Decorated with ZnO Particles. Chemistry - A European Journal, 2021, 27, 15706-15715.	1.7	13
129	Covalently Grafting Sulfur-Containing Polymers to Carbon Nanotubes Enhances the Electrochemical Performance of Sulfur Cathodes. ACS Applied Polymer Materials, 2022, 4, 939-949.	2.0	13
130	Synthesis of poly(3â€hexylthiophene)â€ <i>block</i> â€poly(ethylene)â€ <i>block</i> â€poly(3â€hexylthiophene) v combination of ringâ€opening olefin metathesis polymerization and grignard metathesis polymerization. Journal of Polymer Science Part A, 2013, 51, 3810-3817.	ia a 2.5	12
131	Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquidâ€Crystalline Mesophases. Chemistry - A European Journal, 2018, 24, 6399-6411.	1.7	12
132	Controlled Syntheses of Poly(phenylene ethynylene)s with Regiochemically-Tuned Optical Band Gaps and Ordered Morphologies. Macromolecules, 2018, 51, 5972-5978.	2.2	12
133	Photoinitiated ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2019, 57, 1791-1795.	2.5	12
134	Domain epitaxy of crystalline BeO films on GaN and ZnO substrates. Journal of the American Ceramic Society, 2019, 102, 3745-3752.	1.9	12
135	C1 Polymerization of Fluorinated Aryl Diazomethanes. ACS Macro Letters, 2022, 11, 7-14.	2.3	12
136	Electrochromic Poly(acetylene)s with Switchable Visible/Nearâ€IR Absorption Characteristics. Macromolecular Rapid Communications, 2014, 35, 210-213.	2.0	11
137	Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide. Scientific Reports, 2017, 7, 13205.	1.6	10
138	Potentiostatically Controlled Olefin Metathesis. Organometallics, 2020, 39, 1744-1750.	1.1	10
139	Porphyrin–oligothiophene conjugates as additives for P3HT/PCBM solar cells. Journal of Materials Chemistry, 2012, 22, 18956.	6.7	9
140	Effect of interfacial dipoles on charge traps in organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 3258.	5.2	9
141	Pyridine- and pyrimidine-functionalized poly(sulfone)s: performance-enhancing crosslinkers for acid/base blend proton exchange membranes used in direct methanol fuel cells. RSC Advances, 2013, 4, 2167-2176.	1.7	9
142	Cyclic (Aryl)(Amido)Carbenes: NHCs with Tripletâ€like Reactivity. Angewandte Chemie, 2019, 131, 16466-16471.	1.6	9
143	Ru(II)â€based antineoplastic: A "wingtip―Nâ€heterocyclic carbene facilitates access to a new class of organometallics that are cytotoxic to common cancer cell lines. Applied Organometallic Chemistry, 2019, 33, e4692.	1.7	9
144	Effects of Alkyl-Substituted Polybenzoxazines on Tribological Properties of Non-Asbestos Composite Friction Materials. Polymers, 2021, 13, 567.	2.0	9

#	Article	IF	CITATIONS
145	Carbonâ€Based Materials as Lithium Hosts for Lithium Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	9
146	Post-polymerization modification of poly(vinyl ether)s: a Ru-catalyzed oxidative synthesis of poly(vinyl ester)s and poly(propenyl ester)s. Polymer Chemistry, 2016, 7, 63-68.	1.9	8
147	Polarization modulation effect of BeO on AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2019, 115, .	1.5	8
148	Glass fabric reinforced polybenzoxazine composites filled with nanosilica: A High impact response poises use as strike panels in multilayered armor applications. Journal of Materials Research and Technology, 2020, 9, 12723-12736.	2.6	8
149	Hydrogenated Poly(Dewar benzene): A Compact Cyclic Olefin Polymer with Enhanced Thermomechanical Properties. Macromolecules, 2020, 53, 3202-3208.	2.2	8
150	Poly(methyl methacrylate) copolymers containing dipyrrolylquinoxaline receptors for the colorimetric detection of halide anion salts. Supramolecular Chemistry, 2012, 24, 101-105.	1.5	7
151	L _g = 100 nm In _{0.7} Ga _{0.3} As quantum well metal-oxide semico field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer. Applied Physics Letters, 2014, 104, 163502.	onductor 1.5	7
152	Halides with Fifteen Aliphatic C–H···Anion Interaction Sites. Scientific Reports, 2016, 6, 30123.	1.6	7
153	Soluble asphaltene oxide: a homogeneous carbocatalyst that promotes synthetic transformations. RSC Advances, 2020, 10, 15598-15603.	1.7	7
154	Ring Opening Metathesis Polymerization of Cyclic Allenes. Macromolecules, 2021, 54, 6135-6143.	2.2	7
155	Synthesis of poly(ethylene-co-acrylic acid) via a tandem hydrocarboxylation/hydrogenation of poly(butadiene). Polymer Chemistry, 2013, 4, 2239-2245.	1.9	6
156	Effect of Copper Substrate Surface Orientation on the Reductive Functionalization of Graphene. Chemistry of Materials, 2019, 31, 8639-8648.	3.2	6
157	Bipyridyl/carbazolate silver(I) and gold(I) Nâ€heterocyclic carbene complexes: A systematic study of geometric constraints and electronic properties. Applied Organometallic Chemistry, 2020, 34, e5335.	1.7	6
158	Poly(carbyne)s via reductive C1 polymerization. Polymer International, 2021, 70, 34-40.	1.6	5
159	Agarose-Based Hierarchical Porous Carbons Prepared with Gas-Generating Activators and Used in High-Power Density Supercapacitors. Energy & Fuels, 2021, 35, 19775-19783.	2.5	5
160	Energy band offsets of BeO dielectrics grown via atomic-layer deposition on β-Ga2O3 substrates. Journal of Alloys and Compounds, 2022, 922, 166197.	2.8	5
161	Crystal properties of atomic-layer deposited beryllium oxide on crystal and amorphous substrates. Semiconductor Science and Technology, 2019, 34, 115021.	1.0	4
162	Design, synthesis and study of a photochromic α,ï‰-diene: toward new classes of photoswitchable polymers. Organic and Biomolecular Chemistry, 2019, 17, 2486-2491.	1.5	4

#	Article	IF	CITATIONS
163	Substituted Azolium Disposition: Examining the Effects of Alkyl Placement on Thermal Properties. Crystals, 2019, 9, 34.	1.0	4
164	Agar-reduced graphene oxide selectively adsorbs organic dyes and strengthens double-network hydrogels. RSC Advances, 2020, 10, 29287-29295.	1.7	4
165	Direct laser writing of poly(phenylene vinylene) on poly(barrelene). Polymer Chemistry, 2020, 11, 5437-5443.	1.9	4
166	Atom Transfer Radical Polymerization in the Solid‧tate. Angewandte Chemie, 2020, 132, 14033-14039.	1.6	4
167	Polarization-Induced Two-Dimensional electron gas at BeO/ZnO interface. Applied Surface Science, 2022, 600, 154103.	3.1	4
168	Redox-switchable olefin cross metathesis (CM) reactions and acyclic diene metathesis (ADMET) polymerizations. Materials Chemistry Frontiers, 2019, 3, 2083-2089.	3.2	3
169	Stereoelectronically Directed Photodegradation of Poly(adamantyl Vinyl Ketone). Macromolecular Rapid Communications, 2019, 40, 1900302.	2.0	3
170	Oxygen atom transfer: a mild and efficient method for generating iminyl radicals. Chemical Communications, 2019, 55, 7061-7064.	2.2	3
171	Band alignment of BeO gate dielectric grown by atomic-layer deposition on AlGaN/GaN HEMTs. Applied Surface Science, 2020, 505, 144107.	3.1	3
172	Impact Response of Aramid Fabric-Reinforced Polybenzoxazine/Urethane Composites Containing Multiwalled Carbon Nanotubes Used as Support Panel in Hard Armor. Polymers, 2021, 13, 2779.	2.0	3
173	Stereoelectronically-induced allosteric binding: shape complementarity promotes positive cooperativity in fullerene/buckybowl complexes. Chemical Communications, 2022, 58, 6498-6501.	2.2	3
174	Poly(2-imino-4-oxazolidinone)s via the Condensation of Diamidocarbenes with Bis(isocyanate)s. Macromolecules, 2015, 48, 9081-9084.	2.2	2
175	Poly(polyhedral)s: synthesis and study of a new class of polyurethanes composed of homocubanes. Polymer International, 2018, 67, 1664-1669.	1.6	2
176	A systematic study of stereochemical effects in homologous poly(alkenamer)s: Dewar benzene versus norbornene. Journal of Polymer Science, 2020, 58, 1687-1698.	2.0	2
177	Nickelâ€catalyzed polymerization of a substituted sulfoxonium ylide. Journal of Polymer Science, 2021, 59, 1787-1794.	2.0	2
178	Examining the interlayer interactions formed between reduced graphene oxide and ionic liquids. MRS Communications, 2013, 3, 67-71.	0.8	1
179	Synthesis and Study of Palladium(II) and Platinum(II) Complexes Supported by a Common "Wingtip― Nâ€Heterocyclic Carbene. ChemistrySelect, 2018, 3, 10732-10737.	0.7	1
180	Electronic Tuning and Catalytic Activity of a Novel Pd(II) Complex Supported by a Tetracoordinate Ligand. ChemistrySelect, 2018, 3, 13284-13288.	0.7	0

#	Article	IF	CITATIONS
181	Synthesis of Honeycomb‧tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie, 2020, 132, 15864-15870.	1.6	0
182	New classes of functionalized parylenes and poly(phenylene vinylene)s via coupling of dihaloxylyl diesters. Polymer Chemistry, 2022, 13, 613-621.	1.9	0