
Jiahao Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2643454/publications.pdf

Version: 2024-02-01

Ιιληλο ΥλΝ

#	Article	IF	CITATIONS
1	WS ₂ /hBN Hetero-nanoslits with Spatially Mismatched Electromagnetic Multipoles for Directional and Enhanced Light Emission. ACS Nano, 2022, 16, 675-682.	7.3	5
2	Engineering Radiative Energy Transfer and Directional Excitonic Emission in van der Waals Heterostructures. Laser and Photonics Reviews, 2022, 16, .	4.4	2
3	Etching-free high-throughput intersectional nanofabrication of diverse optical nanoantennas for nanoscale light manipulation. Journal of Colloid and Interface Science, 2022, 622, 950-959.	5.0	6
4	Allâ€Dielectric Nanostructure Fabry–Pérotâ€Enhanced Mie Resonances Coupled with Photogain Modulation toward Ultrasensitive In ₂ S ₃ Photodetector. Advanced Functional Materials, 2021, 31, 2007987.	7.8	34
5	Energy Dissipation and Asymmetric Excitation in Hybrid Waveguides for Routing and Coloring. Journal of Physical Chemistry Letters, 2021, 12, 7034-7040.	2.1	26
6	Optical Resonance Coupled with Electronic Structure Engineering toward Highâ€Sensitivity Photodetectors. Advanced Optical Materials, 2021, 9, 2101374.	3.6	12
7	Individual Si Nanospheres Wrapped in a Suspended Monolayer WS ₂ for Electromechanically Controlled Mieâ€Type Nanopixels. Advanced Optical Materials, 2021, 9, 2001954.	3.6	7
8	Point-Source Geometric Metasurface Holography. Nano Letters, 2021, 21, 2332-2338.	4.5	43
9	Direct–indirect bandgap transition in monolayer MoS ₂ induced by an individual Si nanoparticle. Nanotechnology, 2020, 31, 065204.	1.3	9
10	All-dielectric materials and related nanophotonic applications. Materials Science and Engineering Reports, 2020, 141, 100563.	14.8	28
11	Enhancement of exciton emission in WS ₂ based on the Kerker effect from the mode engineering of individual Si nanostripes. Nanoscale Horizons, 2020, 5, 1368-1377.	4.1	7
12	Directional radiation and photothermal effect enhanced control of 2D excitonic emission based on germanium nanoparticles. Nanotechnology, 2020, 31, 385201.	1.3	2
13	Strain engineering coupled with optical regulation towards a high-sensitivity In ₂ S ₃ photodetector. Materials Horizons, 2020, 7, 1427-1435.	6.4	53
14	Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles. Materials Horizons, 2020, 7, 1542-1551.	6.4	12
15	Multiple resonance coupling in an individual germanium nanogroove with organic dyes. Journal Physics D: Applied Physics, 2020, 53, 215103.	1.3	1
16	Loss-favored ultrasensitive refractive index sensor based on directional scattering from a single all-dielectric nanosphere. Journal of Materials Chemistry C, 2020, 8, 6350-6357.	2.7	3
17	Trapping and filtering of light by single Si nanospheres in a GaAs nanocavity. Nanoscale, 2019, 11, 16299-16307.	2.8	2
18	Electrically Biased Silicon Metasurfaces with Magnetic Mie Resonance for Tunable Harmonic Generation of Light. ACS Photonics, 2019, 6, 2663-2670.	3.2	27

Jiahao Yan

#	Article	IF	CITATIONS
19	Single silicon nanostripe gated suspended monolayer and bilayer WS ₂ to realize abnormal electro-optical modulation. Materials Horizons, 2019, 6, 334-342.	6.4	17
20	Directional Fano Resonance in an Individual GaAs Nanospheroid. Small, 2019, 15, e1900546.	5.2	16
21	Tunable Control of Interlayer Excitons in WS ₂ /MoS ₂ Heterostructures via Strong Coupling with Enhanced Mie Resonances. Advanced Science, 2019, 6, 1802092.	5.6	40
22	Dynamic radiative tailoring based on mid-refractive dielectric nanoantennas. Nanoscale Horizons, 2019, 4, 712-719.	4.1	11
23	Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect. Nanoscale Horizons, 2019, 4, 148-157.	4.1	18
24	Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS ₂ : A Magnetic-Dipole-Mediated Energy Transfer Process. ACS Nano, 2019, 13, 1739-1750.	7.3	90
25	Photoluminescence manipulation of WS ₂ flakes by an individual Si nanoparticle. Materials Horizons, 2019, 6, 97-106.	6.4	36
26	An Allâ€Dielectric Metasurface Building Block for the Kerker Effect between Excitons and Nanocavities: Germanium Nanogroove. Advanced Optical Materials, 2018, 6, 1701176.	3.6	7
27	Creating a Nanoscale "Black Hole―to Trap Light by a Single Au Nanosphere in an Allâ€Dielectric Nanocavity. Advanced Optical Materials, 2018, 6, 1800366.	3.6	1
28	Ultrafast Control of Phase and Polarization of Light Expedited by Hot-Electron Transfer. Nano Letters, 2018, 18, 5544-5551.	4.5	60
29	The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Science Advances, 2018, 4, eaas9894.	4.7	159
30	Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove. Light: Science and Applications, 2017, 6, e16197-e16197.	7.7	31
31	Plasmon-Induced Energy Transfer and Photoluminescence Manipulation in MoS ₂ with a Different Number of Layers. ACS Photonics, 2017, 4, 1092-1100.	3.2	39
32	Enhanced second harmonic generation in individual barium titanate nanoparticles driven by Mie resonances. Journal of Materials Chemistry C, 2017, 5, 4810-4819.	2.7	33
33	Directional Scattering in a Germanium Nanosphere in the Visible Light Region. Advanced Optical Materials, 2017, 5, 1700761.	3.6	37
34	Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna. Nano Letters, 2017, 17, 4793-4800.	4.5	19
35	Resonance Coupling in Silicon Nanosphere–J-Aggregate Heterostructures. Nano Letters, 2016, 16, 6886-6895.	4.5	58
36	Midrefractive Dielectric Modulator for Broadband Unidirectional Scattering and Effective Radiative Tailoring in the Visible Region. ACS Applied Materials & Interfaces, 2016, 8, 22468-22476.	4.0	26

Jiahao Yan

#	Article	IF	CITATIONS
37	Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Nanoscale, 2016, 8, 15001-15007.	2.8	18
38	Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale, 2016, 8, 8826-8838.	2.8	69
39	New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale, 2016, 8, 5996-6007.	2.8	50
40	Matching energy levels between TiO ₂ and α-Fe ₂ O ₃ in a core–shell nanoparticle for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 14853-14863.	5.2	57
41	Electronic Reconstruction of α-Ag ₂ WO ₄ Nanorods for Visible-Light Photocatalysis. ACS Nano, 2015, 9, 7256-7265.	7.3	131
42	Directional Fano Resonance in a Silicon Nanosphere Dimer. ACS Nano, 2015, 9, 2968-2980.	7.3	198
43	Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection. Journal of Physical Chemistry C, 2015, 119, 1234-1246.	1.5	58
44	Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna. Nanoscale Research Letters, 2013, 8, 295.	3.1	5
45	Electro-Optical Manipulation Based on Dielectric Nanoparticles. , 0, , .		О