
MÓnica Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2643202/publications.pdf Version: 2024-02-01

3

#	Article	IF	CITATIONS
1	Kv1.3 Channel Blockade Improves Inflammatory Profile, Reduces Cardiac Electrical Remodeling, and Prevents Arrhythmia in Type 2 Diabetic Rats. Cardiovascular Drugs and Therapy, 2023, 37, 63-73.	2.6	5
2	Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart. International Journal of Molecular Sciences, 2022, 23, 6021.	4.1	1
3	Molecular and Electrophysiological Role of Diabetes-Associated Circulating Inflammatory Factors in Cardiac Arrhythmia Remodeling in a Metabolic-Induced Model of Type 2 Diabetic Rat. International Journal of Molecular Sciences, 2021, 22, 6827.	4.1	6
4	Electrical Features of the Diabetic Myocardium. Arrhythmic and Cardiovascular Safety Considerations in Diabetes. Frontiers in Pharmacology, 2021, 12, 687256.	3.5	18
5	Generation of NKX2.5GFP Reporter Human iPSCs and Differentiation Into Functional Cardiac Fibroblasts. Frontiers in Cell and Developmental Biology, 2021, 9, 797927.	3.7	2
6	Methylmercury Poisoning Induces Cardiac Electrical Remodeling and Increases Arrhythmia Susceptibility and Mortality. International Journal of Molecular Sciences, 2020, 21, 3490.	4.1	4
7	Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Frontiers in Physiology, 2020, 11, 607860.	2.8	16
8	High Thyrotropin Is Critical for Cardiac Electrical Remodeling and Arrhythmia Vulnerability in Hypothyroidism. Thyroid, 2019, 29, 934-945.	4.5	17
9	CaMKII Modulates the Cardiac Transient Outward K+ Current through its Association with Kv4 Channels in Non-Caveolar Membrane Rafts. Cellular Physiology and Biochemistry, 2019, 54, 27-39.	1.6	4
10	ACTIVE METHODOLOGIES FOR SOLVING CLINICAL CASES: STUDENTâ \in ^{MS} FEEDBACK. , 2017, , .		0
11	THE DEBATE AS A PEDAGOGICAL TOOL FROM A MULTIDISCIPLINARY APPROACH. , 2017, , .		1
12	Mechanisms of IhERG/IKr Modulation by $\hat{l}\pm 1$ -Adrenoceptors in HEK293 Cells and Cardiac Myocytes. Cellular Physiology and Biochemistry, 2016, 40, 1261-1273.	1.6	7
13	Thyroid stimulating hormone directly modulates cardiac electrical activity. Journal of Molecular and Cellular Cardiology, 2015, 89, 280-286.	1.9	18
14	Ionic channels underlying the ventricular action potential in zebrafish embryo. Pharmacological Research, 2014, 84, 26-31.	7.1	36
15	Basolateral expression of GRP94 in parietal cells of gastric mucosa. Biochemistry (Moscow), 2014, 79, 8-15.	1.5	6
16	Adrenergic regulation of cardiac ionic channels. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 692-699.	2.6	13
17	Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway. Journal of Molecular and Cellular Cardiology, 2014, 76, 116-125.	1.9	42

18 Cellular Mechanism Underlying the Misfunction of Cardiac Ionic Channels in Diabetes. , 2014, , 189-199.

MÓNICA GALLEGO

#	Article	IF	CITATIONS
19	Abstract 157: Toll like Receptor 4 Activation Promotes Cardiac Arrhythmias By Decreasing The Transient Outward Potassium Current (ito) Through An Irf3 dependent And Myd88 independent Pathway. Circulation Research, 2014, 115, .	4.5	0
20	Mechanisms Responsible for the Trophic Effect of Beta-Adrenoceptors on the ItoCurrent Density in Type 1 Diabetic Rat Cardiomyocytes. Cellular Physiology and Biochemistry, 2013, 31, 25-36.	1.6	9
21	Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiologica, 2013, 207, 447-459.	3.8	26
22	α1-Adrenoreceptors regulate only the caveolae-located subpopulation of cardiac K _V 4 channels. Channels, 2010, 4, 168-178.	2.8	17
23	Modulation of the Cardiac Transient Outward Potassium Current by CaMKII is Dependent on Lipid Rafts Integrity. Biophysical Journal, 2010, 98, 135a.	0.5	0
24	Transient outward potassium channel regulation in healthy and diabetic heartsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue) Canadian Journal of Physiology and Pharmacology, 2009, 87, 77-83.	1.4	22
25	Modulation of the Cardiac Transient Outward Potassium Current by Alpha1-Adrenoceptors Requires Caveolae Integrity. Biophysical Journal, 2009, 96, 171a.	0.5	0
26	Reduced Calmodulin Expression Accelerates Transient Outward Potassium Current Inactivation in Diabetic Rat Heart. Cellular Physiology and Biochemistry, 2008, 22, 625-634.	1.6	12
27	Setting Clock Speed in Mammals: The CK1É› tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron, 2008, 58, 78-88.	8.1	342
28	Reversible Protein Phosphorylation Regulates Circadian Rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 413-420.	1.1	80
29	Post-translational modifications regulate the ticking of the circadian clock. Nature Reviews Molecular Cell Biology, 2007, 8, 139-148.	37.0	732
30	DITPA restores the repolarizing potassium currents Itof and Iss in cardiac ventricular myocytes of diabetic rats. Life Sciences, 2006, 79, 883-889.	4.3	13
31	Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochemical Journal, 2006, 399, 169-175.	3.7	82
32	Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1978-H1987.	3.2	45
33	An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10618-10623.	7.1	163
34	Protein serine/threonine phosphatases: life, death, and sleeping. Current Opinion in Cell Biology, 2005, 17, 197-202.	5.4	143
35	α1-Adrenoceptors stimulate a Cαsprotein and reduce the transient outward K+current via a cAMP/PKA-mediated pathway in the rat heart. American Journal of Physiology - Cell Physiology, 2005, 288, C577-C585.	4.6	46
36	Casein Kinase I in the Mammalian Circadian Clock. Methods in Enzymology, 2005, 393, 408-418.	1.0	62

MÓNICA GALLEGO

#	Article	IF	CITATIONS
37	lmipramine, mianserine and maprotiline block delayed rectifier potassium current in ventricular myocytes. Pharmacological Research, 2002, 45, 141-146.	7.1	9
38	Spironolactone and captopril attenuates isoproterenol-induced cardiac remodelling in rats. Pharmacological Research, 2001, 44, 311-315.	7.1	29
39	Regulation of cardiac transient outward potassium current by norepinephrine in normal and diabetic rats. Diabetes/Metabolism Research and Reviews, 2001, 17, 304-309.	4.0	17
40	Restoration of cardiac transient outward potassium current by norepinephrine in diabetic rats. Pflugers Archiv European Journal of Physiology, 2000, 441, 102-107.	2.8	20
41	Effects of Amphetamine on Calcium and Potassium Currents in Rat Heart. Journal of Cardiovascular Pharmacology, 2000, 36, 390-395.	1.9	16
42	Imipramine inhibits soluble enkephalin-degrading aminopeptidase activity in vitro. European Journal of Pharmacology, 1998, 360, 113-116.	3.5	7
43	Differences in regional distribution of K+ current densities in rat ventricle. Life Sciences, 1998, 63, 391-400.	4.3	60
44	Subcellular analysis of Tyr-aminopeptidase activities in the developing rat cerebellum. Developmental Brain Research, 1997, 99, 66-71.	1.7	5
45	Diabetesa gaixotasun inflamatorio gisa. Ekaia (journal), 0, , .	0.0	0